112 research outputs found

    Guanosine nucleotides regulate B2 kinin receptor affinity of agonists but not of antagonists: Discussion of a model proposing receptor precoupling to G protein

    Get PDF
    The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist {[}H-3]BK and the antagonist {[}H-3]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for {[}H-3]BK and a K-d Of 3.8 nM for the antagonist {[}H-3]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left {[}H-3]-NPC17731 binding unaffected, but reduced the receptor affinity for {[}H-3]BK to a K-d Of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C, The rank order of the guanosine nucleotides for {[}H-3]BK binding reduction was GTP{[}gamma S] = Gpp{[}NH]p > GTP = GDP > GDP{[}beta S]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page

    Receptor Regulation

    No full text

    Beta-Adrenergic receptor kinase 1 expression in catecholamine induced cardiac hypertrophy

    No full text

    Constitutively active mutants of the alpha 2-adrenergic receptor.

    No full text
    We have mutated a single residue, Thr373 [corrected], in the C-terminal portion of the third intracellular loop of the alpha 2C10-adrenergic receptor into five different amino acids. In analogy with the effect of similar mutations in the alpha 1B- and beta 2-adrenergic receptors, these substitutions resulted in two major biochemical modifications: 1) increased constitutive activity of the alpha 2-adrenergic receptor leading to agonist-independent inhibition of adenylyl cyclase and 2) increased affinity of the receptor for binding agonist but not antagonists. The increased constitutive activity of the mutated alpha 2-adrenergic receptors could be inhibited by pertussis toxin, clearly indicating that it results from spontaneous ligand-independent receptor coupling to Gi. In contrast, the increased affinity of the mutant receptors for binding agonists was unaffected by pertussis toxin treatment, indicating that this is an inherent property of the receptors not dependent on interaction with Gi. Coexpression of the receptor mutants with the receptor-specific kinase, beta ARK1, indicated that the constitutively active alpha 2-adrenergic receptors are substrates for beta-adrenergic receptor kinase (beta ARK)-mediated phosphorylation even in the absence of agonist. These findings strengthen the idea that constitutively active adrenergic receptors mimic the "active" state of a G protein-coupled receptor adopting conformations similar to those induced by agonist when it binds to wild type receptors. In addition, these results extend the notion that in the adrenergic receptor family the C-terminal portion of the third intracellular loop plays a general role in the processes involved in receptor activation

    Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor.

    No full text
    The beta 2-adrenergic receptor undergoes isomerization between an inactive conformation (R) and an active conformation (R*). The formation of the active conformation of the receptor molecule can be promoted by adrenergic agonists or by mutations in the third cytoplasmic domain that constitutively activate the receptor. Here we show that, of several beta-adrenergic receptor-blocking drugs tested, only two, ICI 118551 and betaxolol, inhibit the basal signaling activity of the beta 2-adrenergic receptor, thus acting as negative antagonists. We document the molecular properties of the more efficacious ICI 118551; (i) it shows higher affinity for the inactive form of the receptor and (ii) it inhibits the spontaneous formation of a beta-adrenergic receptor kinase substrate by the receptor. These properties are opposite those of adrenergic agonists, indicating that, in a fashion reciprocal to that of agonists, negative antagonists promote the formation of an inactive conformation of the receptor
    corecore