406 research outputs found

    Charmed Exotics in Heavy Ion Collisions

    Get PDF
    Based on the color-spin interaction in diquarks, we argue that charmed multiquark hadrons are likely to exist. Because of the appreciable number of charm quarks produced in central nucleus-nucleus collisions at ultrarelativistic energies, production of charmed multiquark hadrons is expected to be enhanced in these collisions. Using both the quark coalescence model and the statistical hadronization model, we estimate the yield of charmed tetraquark meson TccT_{cc} and pentaquark baryon Θcs\Theta_{cs} in heavy ion collisions at RHIC and LHC. We further discuss the decay modes of these charmed exotic hadrons in order to facilitate their detections in experiments

    Searches for Stable Strangelets in Ordinary Matter: Overview and a Recent Example

    Full text link
    Our knowledge on the possible existence in nature of stable exotic particles depends solely upon experimental observation. Guided by this general principle and motivated by theoretical hypotheses on the existence of stable particles of strange quark matter, a variety of experimental searches have been performed. We provide an introduction to the theoretical hypotheses, an overview of the past searches, and a more detailed description of a recent search for helium-like strangelets in the Earth's atmosphere using a sensitive laser spectroscopy method

    Deltaron Dibaryon Structure in Chiral SU(3) Quark Model

    Full text link
    We discuss the structure of Deltaron dibaryon in the chiral SU(3) quark model. The energy of Deltaron is obtained by considering the coupling of the ΔΔ\Delta\Delta and CCCC (hidden color) channels. The effects of various parameters on the Deltaron mass are also studied. It is shown that the mass of Deltaron is lower than the mass of ΔΔ\Delta\Delta but higher than the mass of ΔNπ\Delta N \pi.Comment: 15 pages, Late

    Study of B→D∗∗πB\to D^{**} \pi decays

    Full text link
    We investigate the production of the novel PP-wave mesons D0∗D^{*}_{0} and D1â€Č(D1)D^{\prime}_{1} (D_{1}), identified as JP=0+J^{P}=0^+ and 1+1^+, in heavy BB meson decays, respectively. With the heavy quark limit, we give our modelling wave functions for the scalar meson D0∗D^{*}_{0}. Based on the assumptions of color transparency and factorization theorem, we estimate the branching ratios of B→D0∗πB\to D^{*}_{0} \pi decays in terms of the obtained wave functions. Some remarks on D1(â€Č)D^{(\prime)}_{1} productions are also presented.Comment: 16 pages, 2 figures, Revtex4, to be published in Phys. Rev.

    A Study of the Scintillation Induced by Alpha Particles and Gamma Rays in Liquid Xenon in an Electric Field

    Full text link
    Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200 keV, the number of scintillation photons was found to decrease by 64+/-2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields.Comment: 15 pages, 12 figures, accepted by Nuclear Instruments and Methods in Physics Research

    Radiative Scalar Meson Decays in the Light-Front Quark Model

    Full text link
    We construct a relativistic 3P0^3P_0 wavefunction for scalar mesons within the framework of light-front quark model(LFQM). This scalar wavefunction is used to perform relativistic calculations of absolute widths for the radiative decay processes(0++)→γγ,(0++)â†’Ï•Îł(0^{++})\to\gamma\gamma,(0^{++})\to\phi\gamma, and (0++)â†’ÏÎł(0^{++})\to\rho\gamma which incorporate the effects of glueball-qqˉq\bar{q} mixing. The mixed physical states are assumed to be f0(1370),f0(1500)f_0(1370),f_0(1500),and f0(1710)f_0(1710) for which the flavor-glue content is taken from the mixing calculations of other works. Since experimental data for these processes are poor, our results are compared with those of a recent non-relativistic model calculation. We find that while the relativistic corrections introduced by the LFQM reduce the magnitudes of the decay widths by 50-70%, the relative strengths between different decay processes are fairly well preserved. We also calculate decay widths for the processes ϕ→(0++)Îł\phi\to(0^{++})\gamma and (0^{++})\to\gamma\gamm involving the light scalars f0(980)f_0(980) and a0(980)a_0(980) to test the simple qqˉq\bar{q} model of these mesons. Our results of qqˉq\bar{q} model for these processes are not quite consistent with well-established data, further supporting the idea that f0(980)f_0(980) and a0(980)a_0(980) are not conventional qqˉq\bar{q} states.Comment: 10 pages, 4 figure

    Initial-State Interactions in the Unpolarized Drell-Yan Process

    Get PDF
    We show that initial-state interactions contribute to the cos⁥2ϕ\cos 2 \phi distribution in unpolarized Drell-Yan lepton pair production ppp p and ppˉ→ℓ+ℓ−X p \bar p \to \ell^+ \ell^- X, without suppression. The asymmetry is expressed as a product of chiral-odd distributions h1⊄(x1,p⊄2)×hˉ1⊄(x2,k⊄2)h_1^\perp(x_1,\bm{p}_\perp^2)\times \bar h_1^\perp(x_2,\bm{k}_\perp^2) , where the quark-transversity function h1⊄(x,p⊄2)h_1^\perp(x,\bm{p}_\perp^2) is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an {\it unpolarized} proton. We compute this (naive) TT-odd and chiral-odd distribution function and the resulting cos⁥2ϕ\cos 2 \phi asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this model the function h1⊄(x,p⊄2)h_1^\perp(x,\bm{p}_\perp^2) equals the TT-odd (chiral-even) Sivers effect function f1T⊄(x,p⊄2)f^\perp_{1T}(x,\bm{p}_\perp^2). This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the cos⁥2ϕ\cos 2 \phi asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and gluon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.Comment: 22 pages, 6 figure

    Temperature Dependence of Electric and Magnetic Gluon Condensates

    Full text link
    The contribution of Lorentz non-scalar operators to finite temperature correlation functions is discussed. Using the local duality approach for the one-pion matrix element of a product of two vector currents, the temperature dependence of the average gluonic stress tensor is estimated in the chiral limit to be ⟹E2+B2⟩T=π210bT4\langle{\bf E}^2 +{\bf B}^2\rangle_{T}=\frac{\pi^2}{10}bT^4. At a normalization point ÎŒ=0.5\mu=0.5 GeV we obtain b≈1.1b\approx 1.1. Together with the known temperature dependence of the Lorentz scalar gluon condensate we are able to infer ⟹E2⟩T\langle{\bf E}^2\rangle_T and ⟹B2⟩T\langle{\bf B}^2\rangle_T separately in the low-temperature hadronic phase.Comment: 11 pages, TPI-MINN-92/37-

    Scalar Particles in Lattice QCD

    Get PDF
    We report a project to study scalar particles by lattice QCD simulations. After a brief introduction of the current situation of lattice study of the sigma meson, we describe our numerical simulations of scalar mesons, σ\sigma and Îș\kappa. We observe a low sigma mass, mπ<mσ≀mρm_\pi<m_\sigma\le m_\rho, for which the disconnected diagram plays an important role. For the kappa meson, we obtain higher mass than the experimental value, i.e., mÎș∌2mK∗m_\kappa\sim 2m_{K^*}.Comment: 4 figures, to be published in Proceedings of `International Symposium on Hadron Spectroscopy, Chiral Symmetry and Relativistic Description of Bound Systems' (in a series of KEK proceedings

    Cold Gas in Cluster Cores

    Full text link
    I review the literature's census of the cold gas in clusters of galaxies. Cold gas here is defined as the gas that is cooler than X-ray emitting temperatures (~10^7 K) and is not in stars. I present new Spitzer IRAC and MIPS observations of Abell 2597 (PI: Sparks) that reveal significant amounts of warm dust and star formation at the level of 5 solar masses per year. This rate is inconsistent with the mass cooling rate of 20 +/- 5 solar masses per year inferred from a FUSE [OVI] detection.Comment: 10 pages, conference proceeding
    • 

    corecore