7 research outputs found
Using atmospheric model output to simulate the meteorological tsunami response to Tropical Storm Helene (2000)
[1] In the fall of both 1999 and 2000, unexpected “rapid tides” occurred along the coast of the Avalon Peninsula of Newfoundland. These rapid tides have been linked to the passing of Tropical Storm Jose (1999) and Tropical Storm Helene (2000) over the Grand Banks. Here we examine the dynamic ocean response to Tropical Storm Helene (2000) using a barotropic shallow water ocean model forced by atmospheric pressure and surface winds derived from a simulation of Helene using a dynamical model of the atmosphere. The ocean model is able to capture the main features of the observed response at the coast of Newfoundland as seen in the available tide gauge data. Results show that the simulated sea level response at the coast is driven by a combination of wind stress and atmospheric pressure forcing, the former generally dominating. An exception is Conception Bay, Newfoundland, where the response is captured mainly by atmospheric pressure forcing. Offshore near the edge of the Grand Banks, atmospheric pressure and wind stress forcing are equally important. The wind-forced response depends on the divergence of the surface wind stress and hence on the structure of the storm in the atmospheric model simulation. Sensitivity studies show the importance of having a small time interval (on the order of minutes) at which the atmospheric forcing is supplied to the ocean model and show the importance of the location of the storm track
Numerical study of the storm-induced circulation on the Scotian Shelf during Hurricane Juan using a nested-grid ocean model
A nested-grid ocean circulation modelling system is used to assess the upper ocean response of the Scotian Shelf and adjacent slope to Hurricane Juan in September 2003. The nested-grid system consists of a fine-grid inner model covering the Scotian Shelf/slope and a coarse-grid outer model covering the northwest Atlantic Ocean. The model-calculated upper ocean response to Hurricane Juan is characterized by large divergent surface currents forced by the local wind forcing under the storm, and intense near-inertial currents in the wake of the storm. The sea surface temperature (SST) cooling produced by the model is biased to the right of the storm track and agrees well with a satellite-derived analysis. Over the deep water, off the Scotian Shelf, some of the near-inertial energy input by the storm is advected eastward by the Gulf Stream away from the storm track. The hurricane also generates shelf waves that propagate equatorward with the coastline on their right. In comparison with the outer model results, the inner model captures more meso-scale structures, greater SST cooling and stronger near-inertial currents in the study region