113 research outputs found
Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method
We use the density matrix renormalization group (DMRG) for transfer matrices
to numerically calculate impurity corrections to thermodynamic properties. The
method is applied to two impurity models in the spin-1/2 chain, namely a weak
link in the chain and an external impurity spin. The numerical analysis
confirms the field theory calculations and gives new results for the crossover
behavior.Comment: 9 pages in revtex format including 5 embedded figures (using epsf).
To appear in PRB. The latest version in PDF format can be found at
http://fy.chalmers.se/~eggert/papers/DMRGimp.pd
Spin- and charge-density oscillations in spin chains and quantum wires
We analyze the spin- and charge-density oscillations near impurities in spin
chains and quantum wires. These so-called Friedel oscillations give detailed
information about the impurity and also about the interactions in the system.
The temperature dependence of these oscillations explicitly shows the
renormalization of backscattering and conductivity, which we analyze for a
number of different impurity models. We are also able to analyze screening
effects in one dimension. The relation to the Kondo effect and experimental
consequences are discussed.Comment: Final published version. 15 pages in revtex format including 22
epsf-embedded figures. The latest version in PDF format is available from
http://fy.chalmers.se/~eggert/papers/density-osc.pd
Cold Storage Locker Plants
This archival publication may not reflect current scientific knowledge or recommendations. Current information available from University of Minnesota Agricultural Experiment Station: http://www.maes.umn.edu
Susceptibility of the Spin 1/2 Heisenberg Antiferromagnetic Chain
Highly accurate results are presented for the susceptibility, of
the Heisenberg antiferromagnetic chain for all temperatures, using the
Bethe ansatz and field theory methods. After going through a rounded peak,
approaches its asympotic zero-temperature value with infinite slope.Comment: 8 pages and 3 postscript figures appended (uuencoded), Revtex, Report
#:UBCTP-94-00
Peierls transition in the presence of finite-frequency phonons in the one-dimensional extended Peierls-Hubbard model at half-filling
We report quantum Monte Carlo (stochastic series expansion) results for the
transition from a Mott insulator to a dimerized Peierls insulating state in a
half-filled, 1D extended Hubbard model coupled to optical bond phonons. Using
electron-electron (e-e) interaction parameters corresponding approximately to
polyacetylene, we show that the Mott-Peierls transition occurs at a finite
value of the electron-phonon (e-ph) coupling. We discuss several different
criteria for detecting the transition and show that they give consistent
results. We calculate the critical e-ph coupling as a function of the bare
phonon frequency and also investigate the sensitivity of the critical coupling
to the strength of the e-e interaction. In the limit of strong e-e couplings,
we map the model to a spin-Peierls chain and compare the phase boundary with
previous results for the spin-Peierls transition. We point out effects of a
nonlinear spin-phonon coupling neglected in the mapping to the spin-Peierls
model.Comment: 7 pages, 5 figure
Dimerization and Incommensurate Spiral Spin Correlations in the Zigzag Spin Chain: Analogies to the Kondo Lattice
Using the density matrix renormalization group and a bosonization approach,
we study a spin-1/2 antiferromagnetic Heisenberg chain with near-neighbor
coupling and frustrating second-neighbor coupling , particularly in
the limit . This system exhibits both dimerization and
incommensurate spiral spin correlations. We argue that this system is closely
related to a doped, spin-gapped phase of the one-dimensional Kondo lattice.Comment: 18 pages, with 13 embedded encapsulated Postscript figures, uses
epsf.sty. Corrects a misstatement about the pitch angle, and contains
additional reference
Decoupling of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy
The spin-1/2 antiferromagnetic zig-zag ladder is studied by exact
diagonalization of small systems in the regime of weak inter-chain coupling. A
gapless phase with quasi long-range spiral correlations has been predicted to
occur in this regime if easy-plane (XY) anisotropy is present. We find in
general that the finite zig-zag ladder shows three phases: a gapless collinear
phase, a dimer phase and a spiral phase. We study the level crossings of the
spectrum,the dimer correlation function, the structure factor and the spin
stiffness within these phases, as well as at the transition points. As the
inter-chain coupling decreases we observe a transition in the anisotropic XY
case from a phase with a gap to a gapless phase that is best described by two
decoupled antiferromagnetic chains. The isotropic and the anisotropic XY cases
are found to be qualitatively the same, however, in the regime of weak
inter-chain coupling for the small systems studied here. We attribute this to a
finite-size effect in the isotropic zig-zag case that results from
exponentially diverging antiferromagnetic correlations in the weak-coupling
limit.Comment: to appear in Physical Review
Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain
As a simple model for spin-Peierls systems we study a frustrated Heisenberg
chain coupled to optical phonons. In view of the anorganic spin-Peierls
compound CuGeO3 we consider two different mechanisms of spin-phonon coupling.
Combining variational concepts in the adiabatic regime and perturbation theory
in the anti-adiabatic regime we derive effective spin Hamiltonians which cover
the dynamical effect of phonons in an approximate way. Ground-state phase
diagrams of these models are determined, and the effect of frustration is
discussed. Comparing the properties of the ground state and of low-lying
excitations with exact diagonalization data for the full quantum spin phonon
models, good agreement is found especially in the anti-adiabatic regime.Comment: 9 pages, 7 figures included, submitted to Phys. Rev.
Thermodynamic properties of the two-dimensional S=1/2 Heisenberg antiferromagnet coupled to bond phonons
By applying a quantum Monte Carlo procedure based on the loop algorithm we
investigate thermodynamic properties of the two-dimensional antiferromagnetic
S=1/2 Heisenberg model coupled to Einstein phonons on the bonds. The
temperature dependence of the magnetic susceptibility, mean phonon occupation
numbers and the specific heat are discussed in detail. We study the spin
correlation function both in the regime of weak and strong spin phonon coupling
(coupling constants g=0.1, w=8J and g=2, w=2J, respectively). A finite size
scaling analysis of the correlation length indicates that in both cases long
range Neel order is established in the ground state.Comment: 10 pages, 13 figure
The relationship between seminal leukocytes, oxidative status in the ejaculate, and apoptotic markers in human spermatozoa
The aim of this study was to investigate the relationship between seminal leukocytes, reactive oxygen species (ROS) production in the ejaculate, and markers of apoptosis in human spermatozoa. Semen samples were collected from 60 patients attending fertility clinics at the Reproductive Biology Unit at Tygerberg Academic Hospital and Vincent Pallotti Hospital, Cape Town, South Africa. The concentration of seminal leukocytes was determined and was correlated with ROS production in the ejaculate, the percentage of superoxide (·O2 )- and hydrogen peroxide (H2O2)-positive spermatozoa, glutathione activation in the ejaculate, and with markers of apoptosis in spermatozoa, namely cysteine-dependent aspartate-directed proteases (caspase)-3/7 activation, mitochondrial membrane potential (ΔΨm), and the percentage of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive sperm. Significant correlations with the concentration of seminal leukocytes were found for ROS production in the ejaculate, the percentage of ·O2 -positive spermatozoa, and caspase-3/7 activation in the ejaculate. Leukocytospermic samples showed significantly higher ROS production, percentage of ·O2 -positive sperm, GSH activation, and caspase-3/7 activation compared to non-leukocytospermic samples. The percentage of ·O2 -positive sperm was significantly correlated with sperm ΔΨm and caspase-3/7 activation in the ejaculate. Sperm ΔΨm and TUNEL-positive sperm did not correlate with seminal leukocyte concentration. Data demonstrate that high seminal leukocyte concentrations that leads to increased seminal ROS production, and is also associated with caspase activation in the male germ cell and increased mitochondrial ROS production. The latter could possibly be a result of disturbed ΔΨm. The activation of caspase-3/7 could then follow the increased intrinsic superoxide levels due to depleted intrinsic glutathione (GSH). These cellular events might not directly and immediately lead to DNA fragmentation as an endpoint of apoptosis because of topological hindrances.Web of Scienc
- …