22 research outputs found

    Local linear regression with adaptive orthogonal fitting for the wind power application

    Get PDF
    Short-term forecasting of wind generation requires a model of the function for the conversion of me-teorological variables (mainly wind speed) to power production. Such a power curve is nonlinear and bounded, in addition to being nonstationary. Local linear regression is an appealing nonparametric ap-proach for power curve estimation, for which the model coefficients can be tracked with recursive Least Squares (LS) methods. This may lead to an inaccurate estimate of the true power curve, owing to the assumption that a noise component is present on the response variable axis only. Therefore, this assump-tion is relaxed here, by describing a local linear regression with orthogonal fit. Local linear coefficients are defined as those which minimize a weighted Total Least Squares (TLS) criterion. An adaptive es-timation method is introduced in order to accommodate nonstationarity. This has the additional benefit of lowering the computational costs of updating local coefficients every time new observations become available. The estimation method is based on tracking the left-most eigenvector of the augmented covari-ance matrix. A robustification of the estimation method is also proposed. Simulations on semi-artificial datasets (for which the true power curve is available) underline the properties of the proposed regression and related estimation methods. An important result is the significantly higher ability of local polynomia

    Fast-Timing measurements in 100zr using labr3(ce) detectors coupled with gammasphere

    Get PDF
    In order to investigate the evolution of nuclear deformation in the region of the chart of nuclides around mass numbers A ' 110 and A ' 150, an experiment was performed at the Argonne National Laboratory where the gamma-decay radiation emitted from the fission fragments of 252Cf was measured using 51 Gammasphere detectors coupled with 25 LaBr3(Ce) detectors. In this work, a short description of the experimental setup is presented together with some preliminary results from the fast-Timing analysis of the 4+ state of the nucleus 100Zr. A lifetime value of τ = 50(28) ps was obtained using the Generalized Centroid Shift Method. This result agrees with the literature value of τ = 53(4) ps within one standard deviation
    corecore