779 research outputs found

    Unitary neutron matter in the on-shell limit

    Get PDF
    37th Brazilian Meeting on Nuclear Physics. Sao Paulo (Brazil), 8-12 September 2014.We compute the Bertsch parameter for neutron matter by using nucleon-nucleon interactions that are fully diagonal in momentum space. We analyze the on-shell limit with the similarity renormalization group and compare the results for a simple separable toy model to realistic calculations with high precision NN potentials.E.R.A. would like to thank the Spanish DGI (Grant FIS2011-24149) and Junta de Andalucia (Grant FQM225) for support. S.S. is partially supported by FAPESP and V.S.T. thanks FAEPEX, FAPESP and CNPq for financial support

    Noncommutative Quantum Mechanics and Seiberg-Witten Map

    Full text link
    In order to overcome ambiguity problem on identification of mathematical objects in noncommutative theory with physical observables, quantum mechanical system coupled to the NC U(1) gauge field in the noncommutative space is reformulated by making use of the unitarized Seiberg-Witten map, and applied to the Aharonov-Bohm and Hall effects of the NC U(1) gauge field. Retaining terms only up to linear order in the NC parameter \theta, we find that the AB topological phase and the Hall conductivity have both the same formulas as those of the ordinary commutative space with no \theta-dependence.Comment: 7 pages, no figures, uses revtex4; 8 pages, conclusion changed, Appendix adde

    Bosonic Operator Methods for the Quark Model

    Full text link
    Quark model matrix elements can be computed using bosonic operators and the holomorphic representation for the harmonic oscillator. The technique is illustrated for normal and exotic baryons for an arbitrary number of colors. The computations are much simpler than those using conventional quark model wavefunctions

    The Hahn Quantum Variational Calculus

    Full text link
    We introduce the Hahn quantum variational calculus. Necessary and sufficient optimality conditions for the basic, isoperimetric, and Hahn quantum Lagrange problems, are studied. We also show the validity of Leitmann's direct method for the Hahn quantum variational calculus, and give explicit solutions to some concrete problems. To illustrate the results, we provide several examples and discuss a quantum version of the well known Ramsey model of economics.Comment: Submitted: 3/March/2010; 4th revision: 9/June/2010; accepted: 18/June/2010; for publication in Journal of Optimization Theory and Application

    Noncommutativity, generalized uncertainty principle and FRW cosmology

    Full text link
    We consider the effects of noncommutativity and the generalized uncertainty principle on the FRW cosmology with a scalar field. We show that, the cosmological constant problem and removability of initial curvature singularity find natural solutions in this scenarios.Comment: 8 pages, to appear in IJT

    Perturbation theory of the space-time non-commutative real scalar field theories

    Full text link
    The perturbative framework of the space-time non-commutative real scalar field theory is formulated, based on the unitary S-matrix. Unitarity of the S-matrix is explicitly checked order by order using the Heisenberg picture of Lagrangian formalism of the second quantized operators, with the emphasis of the so-called minimal realization of the time-ordering step function and of the importance of the ⋆\star-time ordering. The Feynman rule is established and is presented using ϕ4\phi^4 scalar field theory. It is shown that the divergence structure of space-time non-commutative theory is the same as the one of space-space non-commutative theory, while there is no UV-IR mixing problem in this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference

    Computational Nuclear Physics and Post Hartree-Fock Methods

    Full text link
    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Nonequilibrium relaxation in neutral BCS superconductors: Ginzburg-Landau approach with Landau damping in real time

    Full text link
    We present a field-theoretical method to obtain consistently the equations of motion for small amplitude fluctuations of the order parameter directly in real time for a homogeneous, neutral BCS superconductor. This method allows to study the nonequilibrium relaxation of the order parameter as an initial value problem. We obtain the Ward identities and the effective actions for small phase the amplitude fluctuations to one-loop order. Focusing on the long-wavelength, low-frequency limit near the critical point, we obtain the time-dependent Ginzburg-Landau effective action to one-loop order, which is nonlocal as a consequence of Landau damping. The nonequilibrium relaxation of the phase and amplitude fluctuations is studied directly in real time. The long-wavelength phase fluctuation (Bogoliubov-Anderson-Goldstone mode) is overdamped by Landau damping and the relaxation time scale diverges at the critical point, revealing critical slowing down.Comment: 31 pages 14 figs, revised version, to appear in Phys. Rev.
    • 

    corecore