68 research outputs found
Stringent constraints on the scalar K pi form factor from analyticity, unitarity and low-energy theorems
We investigate the scalar K pi form factor at low energies by the method of
unitarity bounds adapted so as to include information on the phase and modulus
along the elastic region of the unitarity cut. Using at input the values of the
form factor at t=0 and the Callan-Treiman point, we obtain stringent
constraints on the slope and curvature parameters of the Taylor expansion at
the origin. Also, we predict a quite narrow range for the higher order ChPT
corrections at the second Callan-Treiman point.Comment: 5 pages latex, uses EPJ style files, 3 figures, replaced with version
accepted by EPJ
The Strong CP Problem and Axions
I describe how the QCD vacuum structure, necessary to resolve the
problem, predicts the presence of a P, T and CP violating term proportional to
the vacuum angle . To agree with experimental bounds, however,
this parameter must be very small ). After briefly
discussing some possible other solutions to this, so-called, strong CP problem,
I concentrate on the chiral solution proposed by Peccei and Quinn which has
associated with it a light pseudoscalar particle, the axion. I discuss in
detail the properties and dynamics of axions, focusing particularly on
invisible axion models where axions are very light, very weakly coupled and
very long-lived. Astrophysical and cosmological bounds on invisible axions are
also briefly touched upon.Comment: 14 pages, to appear in the Lecture Notes in Physics volume on Axions,
(Springer Verlag
Can Theta/N Dependence for Gluodynamics be Compatible with 2 pi Periodicity in Theta ?
In a number of field theoretical models the vacuum angle \theta enters
physics in the combination \theta/N, where N stands generically for the number
of colors or flavors, in an apparent contradiction with the expected 2 \pi
periodicity in \theta. We argue that a resolution of this puzzle is related to
the existence of a number of different \theta dependent sectors in a finite
volume formulation, which can not be seen in the naive thermodynamic limit V ->
\infty. It is shown that, when the limit V -> \infty is properly defined,
physics is always 2 \pi periodic in \theta for any integer, and even rational,
values of N, with vacuum doubling at certain values of \theta. We demonstrate
this phenomenon in both the multi-flavor Schwinger model with the bosonization
technique, and four-dimensional gluodynamics with the effective Lagrangian
method. The proposed mechanism works for an arbitrary gauge group.Comment: minor changes in the discussion, a few references are adde
Chiral and Gluon Condensates at Finite Temperature
We investigate the thermal behaviour of gluon and chiral condensates within
an effective Lagrangian of pseudoscalar mesons coupled to a scalar glueball.
This Lagrangian mimics the scale and chiral symmetries of QCD. (Submitted to Z.
Phys. C)Comment: 20 pages + 7 figures (uuencoded compressed postscript files),
University of Regensburg preprint TPR-94-1
Boundary Liouville theory at c=1
The c=1 Liouville theory has received some attention recently as the
Euclidean version of an exact rolling tachyon background. In an earlier paper
it was shown that the bulk theory can be identified with the interacting c=1
limit of unitary minimal models. Here we extend the analysis of the c=1-limit
to the boundary problem. Most importantly, we show that the FZZT branes of
Liouville theory give rise to a new 1-parameter family of boundary theories at
c=1. These models share many features with the boundary Sine-Gordon theory, in
particular they possess an open string spectrum with band-gaps of finite width.
We propose explicit formulas for the boundary 2-point function and for the
bulk-boundary operator product expansion in the c=1 boundary Liouville model.
As a by-product of our analysis we also provide a nice geometric interpretation
for ZZ branes and their relation with FZZT branes in the c=1 theory.Comment: 37 pages, 1 figure. Minor error corrected, slight change in result
(1.6
Finite-Size Corrections to Anomalous Dimensions in N=4 SYM Theory
The scaling dimensions of large operators in N=4 supersymmetric Yang-Mills
theory are dual to energies of semiclassical strings in AdS(5)xS(5). At one
loop, the dimensions of large operators can be computed with the help of Bethe
ansatz and can be directly compared to the string energies. We study
finite-size corrections for Bethe states which should describe quantum
corrections to energies of extended semiclassical strings.Comment: 10 page
Theory of unitarity bounds and low energy form factors
We present a general formalism for deriving bounds on the shape parameters of
the weak and electromagnetic form factors using as input correlators calculated
from perturbative QCD, and exploiting analyticity and unitarity. The values
resulting from the symmetries of QCD at low energies or from lattice
calculations at special points inside the analyticity domain can beincluded in
an exact way. We write down the general solution of the corresponding Meiman
problem for an arbitrary number of interior constraints and the integral
equations that allow one to include the phase of the form factor along a part
of the unitarity cut. A formalism that includes the phase and some information
on the modulus along a part of the cut is also given. For illustration we
present constraints on the slope and curvature of the K_l3 scalar form factor
and discuss our findings in some detail. The techniques are useful for checking
the consistency of various inputs and for controlling the parameterizations of
the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version
accepted by EPJA in Tools section; sentences and figures improve
Mass Spectra of Supersymmetric Yang-Mills Theories in 1+1 Dimensions
Physical mass spectra of supersymmetric Yang-Mills theories in 1+1 dimensions
are evaluated in the light-cone gauge with a compact spatial dimension. The
supercharges are constructed and the infrared regularization is unambiguously
prescribed for supercharges, instead of the light-cone Hamiltonian. This
provides a manifestly supersymmetric infrared regularization for the
discretized light-cone approach. By an exact diagonalization of the supercharge
matrix between up to several hundred color singlet bound states, we find a
rapidly increasing density of states as mass increases.Comment: LaTeX file, 32 page, 7 eps figure
A Chiral Effective Lagrangian for Nuclei
An effective hadronic lagrangian consistent with the symmetries of quantum
chromodynamics and intended for applications to finite-density systems is
constructed. The degrees of freedom are (valence) nucleons, pions, and the
low-lying non-Goldstone bosons, which account for the intermediate-range
nucleon-nucleon interactions and conveniently describe the nonvanishing
expectation values of nucleon bilinears. Chiral symmetry is realized
nonlinearly, with a light scalar meson included as a chiral singlet to describe
the mid-range nucleon-nucleon attraction. The low-energy electromagnetic
structure of the nucleon is described within the theory using vector-meson
dominance, so that external form factors are not needed. The effective
lagrangian is expanded in powers of the fields and their derivatives, with the
terms organized using Georgi's ``naive dimensional analysis''. Results are
presented for finite nuclei and nuclear matter at one-baryon-loop order, using
the single-nucleon structure determined within the model. Parameters obtained
from fits to nuclear properties show that naive dimensional analysis is a
useful principle and that a truncation of the effective lagrangian at the first
few powers of the fields and their derivatives is justified.Comment: 43 pages, REVTeX 3.0 with epsf.sty, plus 12 figure
QCD Corrections to QED Vacuum Polarization
We compute QCD corrections to QED calculations for vacuum polarization in
background magnetic fields. Formally, the diagram for virtual loops
is identical to the one for virtual loops. However due to
confinement, or to the growth of as decreases, a direct
calculation of the diagram is not allowed. At large we consider the
virtual diagram, in the intermediate region we discuss the role of
the contribution of quark condensates \left and at the
low-energy limit we consider the , as well as charged pion
loops. Although these effects seem to be out of the measurement accuracy of
photon-photon laboratory experiments they may be relevant for -ray
burst propagation. In particular, for emissions from the center of the galaxy
(8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion
and photons renders a deviation from the power-law spectrum in the
range. As for scalar quark condensates \left and
virtual loops are relevant only for very high radiation density
and very strong magnetic fields of order .Comment: 15 pages, 4 figures; Final versio
- …