80 research outputs found

    A Model for Granular Texture with Steric Exclusion

    Full text link
    We propose a new method to characterize the geometrical texture of a granular packing at the particle scale including the steric hindrance effect. This method is based on the assumption of a maximum disorder (entropy) compatible both with strain-induced anisotropy of the contact network and steric exclusions. We show that the predicted statistics for the local configurations is in a fairly agreement with our numerical data.Comment: 9 pages, 5 figure

    Unilateral interactions in granular packings: A model for the anisotropy modulus

    Full text link
    Unilateral interparticle interactions have an effect on the elastic response of granular materials due to the opening and closing of contacts during quasi-static shear deformations. A simplified model is presented, for which constitutive relations can be derived. For biaxial deformations the elastic behavior in this model involves three independent elastic moduli: bulk, shear, and anisotropy modulus. The bulk and the shear modulus, when scaled by the contact density, are independent of the deformation. However, the magnitude of the anisotropy modulus is proportional to the ratio between shear and volumetric strain. Sufficiently far from the jamming transition, when corrections due to non-affine motion become weak, the theoretical predictions are qualitatively in agreement with simulation results.Comment: 6 pages, 5 figure

    Geometric origin of mechanical properties of granular materials

    Full text link
    Some remarkable generic properties, related to isostaticity and potential energy minimization, of equilibrium configurations of assemblies of rigid, frictionless grains are studied. Isostaticity -the uniqueness of the forces, once the list of contacts is known- is established in a quite general context, and the important distinction between isostatic problems under given external loads and isostatic (rigid) structures is presented. Complete rigidity is only guaranteed, on stability grounds, in the case of spherical cohesionless grains. Otherwise, the network of contacts might deform elastically in response to load increments, even though grains are rigid. This sets an uuper bound on the contact coordination number. The approximation of small displacements (ASD) allows to draw analogies with other model systems studied in statistical mechanics, such as minimum paths on a lattice. It also entails the uniqueness of the equilibrium state (the list of contacts itself is geometrically determined) for cohesionless grains, and thus the absence of plastic dissipation. Plasticity and hysteresis are due to the lack of such uniqueness and may stem, apart from intergranular friction, from small, but finite, rearrangements, in which the system jumps between two distinct potential energy minima, or from bounded tensile contact forces. The response to load increments is discussed. On the basis of past numerical studies, we argue that, if the ASD is valid, the macroscopic displacement field is the solution to an elliptic boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and minor errors correcte

    Best Geosynthetics International

    No full text

    Centrifuge modeling of wrapped-reinforced sand slope

    No full text

    Centrifuge modelling tests of geocell gravity retaining structures

    No full text

    A Numerical Model for EPS Geofoam Seismic Buffers

    No full text

    LRFD Calibration of Metallic Reinforced Soil Walls

    No full text
    • …
    corecore