19 research outputs found

    Static spectroscopy of a dense superfluid

    Full text link
    Dense Bose superfluids, as HeII, differ from dilute ones by the existence of a roton minimum in their excitation spectrum. It is known that this roton minimum is qualitatively responsible for density oscillations close to any singularity, such as vortex cores, or close to solid boundaries. We show that the period of these oscillations, and their exponential decrease with the distance to the singularity, are fully determined by the position and the width of the roton minimum. Only an overall amplitude factor and a phase shift are shown to depend on the details of the interaction potential. Reciprocally, it allows for determining the characteristics of this roton minimum from static "observations" of a disturbed ground state, in cases where the dynamics is not easily accessible. We focus on the vortex example. Our analysis further shows why the energy of these oscillations is negligible compared to the kinetic energy, which limits their influence on the vortex dynamics, except for high curvatures.Comment: 14 pages, 4 figures, extended version, published in J. Low Temp. Phy

    Particle velocity in noncommutative space-time

    Full text link
    We investigate a particle velocity in the κ\kappa-Minkowski space-time, which is one of the realization of a noncommutative space-time. We emphasize that arrival time analyses by high-energy γ\gamma-rays or neutrinos, which have been considered as powerful tools to restrict the violation of Lorentz invariance, are not effective to detect space-time noncommutativity. In contrast with these examples, we point out a possibility that {\it low-energy massive particles} play an important role to detect it.Comment: 16 pages, corrected some mistake

    Singularity-free cosmological solutions in quadratic gravity

    Full text link
    We study a general field theory of a scalar field coupled to gravity through a quadratic Gauss-Bonnet term ξ(ϕ)RGB2\xi(\phi) R^2_{GB}. The coupling function has the form ξ(ϕ)=ϕn\xi(\phi)=\phi^n, where nn is a positive integer. In the absence of the Gauss-Bonnet term, the cosmological solutions for an empty universe and a universe dominated by the energy-momentum tensor of a scalar field are always characterized by the occurrence of a true cosmological singularity. By employing analytical and numerical methods, we show that, in the presence of the quadratic Gauss-Bonnet term, for the dual case of even nn, the set of solutions of the classical equations of motion in a curved FRW background includes singularity-free cosmological solutions. The singular solutions are shown to be confined in a part of the phase space of the theory allowing the non-singular solutions to fill the rest of the space. We conjecture that the same theory with a general coupling function that satisfies certain criteria may lead to non-singular cosmological solutions.Comment: Latex, 25 pages, 6 figures, some explanatory sentences and Comments added, version to appear in Physical Review

    The singularty on interpolation by rational spline functions

    Get PDF
    corecore