31 research outputs found

    Slow dynamics for the dilute Ising model in the phase coexistence region

    Full text link
    In this paper we consider the Glauber dynamics for a disordered ferromagnetic Ising model, in the region of phase coexistence. It was conjectured several decades ago that the spin autocorrelation decays as a negative power of time [Huse and Fisher, Phys. Rev. B, 1987]. We confirm this behavior by establishing a corresponding lower bound in any dimensions d2d \geqslant 2, together with an upper bound when d=2d=2. Our approach is deeply connected to the Wulff construction for the dilute Ising model. We consider initial phase profiles with a reduced surface tension on their boundary and prove that, under mild conditions, those profiles are separated from the (equilibrium) pure plus phase by an energy barrier.Comment: 44 pages, 6 figure

    Colligative properties of solutions: II. Vanishing concentrations

    Full text link
    We continue our study of colligative properties of solutions initiated in math-ph/0407034. We focus on the situations where, in a system of linear size LL, the concentration and the chemical potential scale like c=ξ/Lc=\xi/L and h=b/Lh=b/L, respectively. We find that there exists a critical value \xit such that no phase separation occurs for \xi\le\xit while, for \xi>\xit, the two phases of the solvent coexist for an interval of values of bb. Moreover, phase separation begins abruptly in the sense that a macroscopic fraction of the system suddenly freezes (or melts) forming a crystal (or droplet) of the complementary phase when bb reaches a critical value. For certain values of system parameters, under ``frozen'' boundary conditions, phase separation also ends abruptly in the sense that the equilibrium droplet grows continuously with increasing bb and then suddenly jumps in size to subsume the entire system. Our findings indicate that the onset of freezing-point depression is in fact a surface phenomenon.Comment: 27 pages, 1 fig; see also math-ph/0407034 (both to appear in JSP

    Spiral model, jamming percolation and glass-jamming transitions

    Full text link
    The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2

    Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections

    Get PDF
    In this note we analyze an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.Comment: Key words: Bootstrap percolation, anisotropy, finite-size effect

    Metastable behavior for bootstrap percolation on regular trees

    Get PDF
    We examine bootstrap percolation on a regular (b+1)-ary tree with initial law given by Bernoulli(p). The sites are updated according to the usual rule: a vacant site becomes occupied if it has at least theta occupied neighbors, occupied sites remain occupied forever. It is known that, when b>theta>1, the limiting density q=q(p) of occupied sites exhibits a jump at some p_t=p_t(b,theta) in (0,1) from q_t:=q(p_t)p_t. We investigate the metastable behavior associated with this transition. Explicitly, we pick p=p_t+h with h>0 and show that, as h decreases to 0, the system lingers around the "critical" state for time order h^{-1/2} and then passes to fully occupied state in time O(1). The law of the entire configuration observed when the occupation density is q in (q_t,1) converges, as h tends to 0, to a well-defined measure.Comment: 10 pages, version to appear in J. Statist. Phy

    Dobrushin states in the \phi^4_1 model

    Full text link
    We consider the van der Waals free energy functional in a bounded interval with inhomogeneous Dirichlet boundary conditions imposing the two stable phases at the endpoints. We compute the asymptotic free energy cost, as the length of the interval diverges, of shifting the interface from the midpoint. We then discuss the effect of thermal fluctuations by analyzing the \phi^4_1-measure with Dobrushin boundary conditions. In particular, we obtain a nontrivial limit in a suitable scaling in which the length of the interval diverges and the temperature vanishes. The limiting state is not translation invariant and describes a localized interface. This result can be seen as the probabilistic counterpart of the variational convergence of the associated excess free energy.Comment: 34 page

    Metastability threshold for anisotropic bootstrap percolation in three dimensions

    Get PDF
    In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability threshold for a fairly general class of models. In our proofs we use an adaptation of the technique of dimensional reduction. We find that the order of the metastability threshold is generally determined by the "easiest growth direction" in the model. In contrast to the anisotropic bootstrap percolation in two dimensions, in three dimensions the order of the metatstability threshold for anisotropic bootstrap percolation can be equal to that of isotropic bootstrap percolation.Comment: 19 page

    The Alexander-Orbach conjecture holds in high dimensions

    Full text link
    We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior has been established, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes a conjecture of Alexander and Orbach. En route we calculate the one-arm exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica

    Abrupt Convergence and Escape Behavior for Birth and Death Chains

    Get PDF
    We link two phenomena concerning the asymptotical behavior of stochastic processes: (i) abrupt convergence or cut-off phenomenon, and (ii) the escape behavior usually associated to exit from metastability. The former is characterized by convergence at asymptotically deterministic times, while the convergence times for the latter are exponentially distributed. We compare and study both phenomena for discrete-time birth-and-death chains on Z with drift towards zero. In particular, this includes energy-driven evolutions with energy functions in the form of a single well. Under suitable drift hypotheses, we show that there is both an abrupt convergence towards zero and escape behavior in the other direction. Furthermore, as the evolutions are reversible, the law of the final escape trajectory coincides with the time reverse of the law of cut-off paths. Thus, for evolutions defined by one-dimensional energy wells with sufficiently steep walls, cut-off and escape behavior are related by time inversion.Comment: 2 figure

    Tunneling and Metastability of continuous time Markov chains

    Full text link
    We propose a new definition of metastability of Markov processes on countable state spaces. We obtain sufficient conditions for a sequence of processes to be metastable. In the reversible case these conditions are expressed in terms of the capacity and of the stationary measure of the metastable states
    corecore