8 research outputs found

    Low temperature transport in AC-driven Quantum Dots in the Kondo regime

    Full text link
    We present a fully nonequilibrium calculation of the low temperature transport properties of a quantum dot in the Kondo regime when an AC potential is applied to the gate voltage. We solve a time dependent Anderson model with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in perturbation theory in the on-site interaction, in the context of the Keldysh non-equilibrium technique, and the effect of the AC voltage is taken into account exactly for all ranges of AC frequencies and AC intensities. The obtained linear conductance and time-averaged density of states of the quantum dot evolve in a non trivial way as a function of the AC frequency and AC intensity of the harmonic modulation.Comment: 30 pages,7 figure

    Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory

    Get PDF
    Using nonequilibrium perturbation theory, we investigate the nonlinear transport through a quantum dot in the Kondo regime in the presence of a magnetic field. We calculate the leading logarithmic corrections to the local magnetization and the differential conductance, which are characteristic of the Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we determine the nonequilibrium magnetization on the dot and show that the application of both a finite bias voltage and a magnetic field induces a novel structure of logarithmic corrections not present in equilibrium. These corrections lead to more pronounced features in the conductance, and their form calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature TT^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
    corecore