901 research outputs found

    Pressure and linear heat capacity in the superconducting state of thoriated UBe13

    Full text link
    Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large linear term in its specific heat. We show that under uniaxial pressure, the linear heat capacity increases in magnitude by more than a factor of two. The change is reversible and suggests that the linear term is an intrinsic property of the material. In addition, we find no evidence of hysteresis or of latent heat in the low-temperature and low-pressure portion of the phase diagram, showing that all transitions in this region are second order.Comment: 5 pages, 4 figure

    Medium-range interactions and crossover to classical critical behavior

    Full text link
    We study the crossover from Ising-like to classical critical behavior as a function of the range R of interactions. The power-law dependence on R of several critical amplitudes is calculated from renormalization theory. The results confirm the predictions of Mon and Binder, which were obtained from phenomenological scaling arguments. In addition, we calculate the range dependence of several corrections to scaling. We have tested the results in Monte Carlo simulations of two-dimensional systems with an extended range of interaction. An efficient Monte Carlo algorithm enabled us to carry out simulations for sufficiently large values of R, so that the theoretical predictions could actually be observed.Comment: 16 pages RevTeX, 8 PostScript figures. Uses epsf.sty. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm

    Pocket Monte Carlo algorithm for classical doped dimer models

    Full text link
    We study the correlations of classical hardcore dimer models doped with monomers by Monte Carlo simulation. We introduce an efficient cluster algorithm, which is applicable in any dimension, for different lattices and arbitrary doping. We use this algorithm for the dimer model on the square lattice, where a finite density of monomers destroys the critical confinement of the two-monomer problem. The monomers form a two-component plasma located in its high-temperature phase, with the Coulomb interaction screened at finite densities. On the triangular lattice, a single pair of monomers is not confined. The monomer correlations are extremely short-ranged and hardly change with doping.Comment: 6 pages, REVTeX

    Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions

    Full text link
    We study XY and dimerized XX spin-1/2 chains with random exchange couplings by analytical and numerical methods and scaling considerations. We extend previous investigations to dynamical properties, to surface quantities and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomenological scaling theory of average quantities based on the scaling properties of rare regions, in which the distribution of the couplings follows a surviving random walk character. Using this theory we have obtained the complete set of critical decay exponents of the random XY and XX models, both in the volume and at the surface. The scaling results are confronted with numerical calculations based on a mapping to free fermions, which then lead to an exact correspondence with directed walks. The numerically calculated critical operator profiles on large finite systems (L<=512) are found to follow conformal predictions with the decay exponents of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmically slow and their distribution show multi-scaling character. In the Griffiths phase, which is an extended part of the off-critical region average autocorrelations have a power-law form with a non-universal decay exponent, which is analytically calculated. We note on extensions of our work to the random antiferromagnetic XXZ chain and to higher dimensions.Comment: 19 pages RevTeX, eps-figures include

    Interstitials, Vacancies and Dislocations in Flux-Line Lattices: A Theory of Vortex Crystals, Supersolids and Liquids

    Full text link
    We study a three dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of vacancy, interstitial and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The coupling to vacancies and interstitials - which are always present in the liquid state - allows dislocations to relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength properties of the resulting state are formally identical to that of the ``flux-line hexatic'' that is a candidate ``normal'' hexatically ordered vortex liquid state.Comment: 21 RevTeX pgs, 7 eps figures uuencoded; corrected typos, published versio

    One Dimensional Chain with Long Range Hopping

    Full text link
    The one-dimensional (1D) tight binding model with random nearest neighbor hopping is known to have a singularity of the density of states and of the localization length at the band center. We study numerically the effects of random long range (power-law) hopping with an ensemble averaged magnitude \expectation{|t_{ij}|} \propto |i-j|^{-\sigma} in the 1D chain, while maintaining the particle-hole symmetry present in the nearest neighbor model. We find, in agreement with results of position space renormalization group techniques applied to the random XY spin chain with power-law interactions, that there is a change of behavior when the power-law exponent σ\sigma becomes smaller than 2

    Magnetoresistance of UPt3

    Full text link
    We have performed measurements of the temperature dependence of the magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic field along the b axis, the easy magnetization axis. We have confirmed previous results for transverse magnetoresistance with the current along the c axis, and report measurements of the longitudinal magnetoresistance with the current along the b axis. The presence of a linear term in both cases indicates broken orientational symmetry associated with magnetic order. With the current along the c axis the linear term appears near 5 K, increasing rapidly with decreasing temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    Numerical study of duality and universality in a frozen superconductor

    Full text link
    The three-dimensional integer-valued lattice gauge theory, which is also known as a "frozen superconductor," can be obtained as a certain limit of the Ginzburg-Landau theory of superconductivity, and is believed to be in the same universality class. It is also exactly dual to the three-dimensional XY model. We use this duality to demonstrate the practicality of recently developed methods for studying topological defects, and investigate the critical behavior of the phase transition using numerical Monte Carlo simulations of both theories. On the gauge theory side, we concentrate on the vortex tension and the penetration depth, which map onto the correlation lengths of the order parameter and the Noether current in the XY model, respectively. We show how these quantities behave near the critical point, and that the penetration depth exhibits critical scaling only very close to the transition point. This may explain the failure of superconductor experiments to see the inverted XY model scaling.Comment: 17 pages, 18 figures. Updated to match the version published in PRB (http://link.aps.org/abstract/PRB/v67/e014525) on 27 Jan 200

    Dislocations and the critical endpoint of the melting line of vortex line lattices

    Full text link
    We develop a theory for dislocation-mediated structural transitions in the vortex lattice which allows for a unified description of phase transitions between the three phases, the elastic vortex glass, the amorphous vortex glass, and the vortex liquid, in terms of a free energy functional for the dislocation density. The origin of a critical endpoint of the melting line at high magnetic fields, which has been recently observed experimentally, is explained.Comment: 4 pages, 1 figur

    Non-Linear Stochastic Equations with Calculable Steady States

    Full text link
    We consider generalizations of the Kardar--Parisi--Zhang equation that accomodate spatial anisotropies and the coupled evolution of several fields, and focus on their symmetries and non-perturbative properties. In particular, we derive generalized fluctuation--dissipation conditions on the form of the (non-linear) equations for the realization of a Gaussian probability density of the fields in the steady state. For the amorphous growth of a single height field in one dimension we give a general class of equations with exactly calculable (Gaussian and more complicated) steady states. In two dimensions, we show that any anisotropic system evolves on long time and length scales either to the usual isotropic strong coupling regime or to a linear-like fixed point associated with a hidden symmetry. Similar results are derived for textural growth equations that couple the height field with additional order parameters which fluctuate on the growing surface. In this context, we propose phenomenological equations for the growth of a crystalline material, where the height field interacts with lattice distortions, and identify two special cases that obtain Gaussian steady states. In the first case compression modes influence growth and are advected by height fluctuations, while in the second case it is the density of dislocations that couples with the height.Comment: 9 pages, revtex
    corecore