727 research outputs found
Low Timing Jitter Detector for Gigahertz Quantum Key Distribution
A superconducting single-photon detector based on a niobium nitride nanowire
is demonstrated in an optical-fibre-based quantum key distribution test bed
operating at a clock rate of 3.3 GHz and a transmission wavelength of 850 nm.
The low jitter of the detector leads to significant reduction in the estimated
quantum bit error rate and a resultant improvement in the secrecy efficiency
compared to previous estimates made by use of silicon single-photon avalanche
detectors.Comment: 11 pages, including 2 figure
Survival of the black hole's Cauchy horizon under non-compact perturbations
We study numerically the evolution of spactime, and in particular of a
spacetime singularity, inside a black hole under a class of perturbations of
non-compact support. We use a very simplified toy model of a spherical charged
black hole which is perturbed nonlinearly by a self-gravitating, spherical
scalar field. The latter grows logarithmically with advanced time along an
outgoing characteristic hypersurface. We find that for that class of
perturbations a portion of the Cauchy horizon survives as a non-central, null
singularity.Comment: 5 pages, 4 figure
Periodic orbit resonances in layered metals in tilted magnetic fields
The frequency dependence of the interlayer conductivity of a layered Fermi
liquid in a magnetic field which is tilted away from the normal to the layers
is considered. For both quasi-one- and quasi-two-dimensional systems resonances
occur when the frequency is a harmonic of the frequency at which the magnetic
field causes the electrons to oscillate on the Fermi surface within the layers.
The intensity of the different harmonic resonances varies significantly with
the direction of the field. The resonances occur for both coherent and weakly
incoherent interlayer transport and so their observation does not imply the
existence of a three-dimensional Fermi surface.Comment: 4 pages, RevTeX + epsf, 2 figures. Discussion of other work revised.
To appear in Phys. Rev. B, Rapid Commun., October 1
Precision wildlife monitoring using unmanned aerial vehicles
Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.Jarrod C. Hodgson, Shane M. Baylis, Rowan Mott, Ashley Herrod & Rohan H. Clark
Indications of coherence-incoherence crossover in layered transport
For many layered metals the temperature dependence of the interlayer
resistance has a different behavior than the intralayer resistance. In order to
better understand interlayer transport we consider a concrete model which
exhibits this behavior. A small polaron model is used to illustrate how the
interlayer transport is related to the coherence of quasi-particles within the
layers. Explicit results are given for the electron spectral function,
interlayer optical conductivity and the interlayer magnetoresistance. All these
quantities have two contributions: one coherent (dominant at low temperatures)
and one incoherent (dominant at high temperatures).Comment: 6 pages, 4 figures, REVTEX
Dynamics of tournaments: the soccer case
A random walk-like model is considered to discuss statistical aspects of
tournaments. The model is applied to soccer leagues with emphasis on the
scores. This competitive system was computationally simulated and the results
are compared with empirical data from the English, the German and the Spanish
leagues and showed a good agreement with them. The present approach enabled us
to characterize a diffusion where the scores are not normally distributed,
having a short and asymmetric tail extending towards more positive values. We
argue that this non-Gaussian behavior is related with the difference between
the teams and with the asymmetry of the scores system. In addition, we compared
two tournament systems: the all-play-all and the elimination tournaments.Comment: To appear in EPJ
Type IIB Colliding Plane Waves
Four-dimensional colliding plane wave (CPW) solutions have played an
important role in understanding the classical non-linearities of Einstein's
equations. In this note, we investigate CPW solutions in --dimensional
Einstein gravity with a -form flux. By using an isomorphism with the
four-dimensional problem, we construct exact solutions analogous to the
Szekeres vacuum solution in four dimensions. The higher-dimensional versions of
the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in
the vicinity of the light-cone. We find that under small perturbations, a
curvature singularity is generically produced, leading to both space-like and
time-like singularities. For , our results pertain to the collision of two
ten-dimensional type IIB Blau - Figueroa o'Farrill - Hull - Papadopoulos plane
waves.Comment: 20+10 pages, 2 figures, uses JHEP3.cls; v2: refs [3,10,22] corrected,
remark added below (3.9) on inexistence of conformally flat CPW in our
ansatz, final version to appear in JHE
Coherent vs incoherent interlayer transport in layered metals
The magnetic-field, temperature, and angular dependence of the interlayer
magnetoresistance of two different quasi-two-dimensional (2D) organic
superconductors is reported. For -(BEDT-TTF)I we find a
well-resolved peak in the angle-dependent magnetoresistance at (field parallel to the layers). This clear-cut proof for the coherent
nature of the interlayer transport is absent for
''-(BEDT-TTF)SFCHCFSO. This and the non-metallic
behavior of the magnetoresistance suggest an incoherent quasiparticle motion
for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres
Anomalous c-axis charge dynamics in copper oxide materials
Within the t-J model, the c-axis charge dynamics of the copper oxide
materials in the underdoped and optimally doped regimes is studied by
considering the incoherent interlayer hopping. It is shown that the c-axis
charge dynamics is mainly governed by the scattering from the in-plane
fluctuation. In the optimally doped regime, the c-axis resistivity is a linear
in temperatures, and shows the metallic-like behavior for all temperatures,
while the c-axis resistivity in the underdoped regime is characterized by a
crossover from the high temperature metallic-like behavior to the low
temperature semiconducting-like behavior, which are consistent with experiments
and numerical simulations.Comment: 6 pages, Latex, Three figures are adde
- …