107 research outputs found

    Semiclassical approximations for Hamiltonians with operator-valued symbols

    Full text link
    We consider the semiclassical limit of quantum systems with a Hamiltonian given by the Weyl quantization of an operator valued symbol. Systems composed of slow and fast degrees of freedom are of this form. Typically a small dimensionless parameter ε1\varepsilon\ll 1 controls the separation of time scales and the limit ε0\varepsilon\to 0 corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple. At the same time ε0\varepsilon\to 0 is the semiclassical limit for the slow degrees of freedom. In this paper we show that the ε\varepsilon-dependent classical flow for the slow degrees of freedom first discovered by Littlejohn and Flynn, coming from an \epsi-dependent classical Hamilton function and an ε\varepsilon-dependent symplectic form, has a concrete mathematical and physical meaning: Based on this flow we prove a formula for equilibrium expectations, an Egorov theorem and transport of Wigner functions, thereby approximating properties of the quantum system up to errors of order ε2\varepsilon^2. In the context of Bloch electrons formal use of this classical system has triggered considerable progress in solid state physics. Hence we discuss in some detail the application of the general results to the Hofstadter model, which describes a two-dimensional gas of non-interacting electrons in a constant magnetic field in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been strengthened with only minor changes to the proofs. A section on the Hofstadter model as an application of the general theory was added and the previous section on other applications was remove

    The Screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and Hamiltonian dynamics

    Full text link
    This paper treats 6j symbols or their orthonormal forms as a function of two variables spanning a square manifold which we call the "screen". We show that this approach gives important and interesting insight. This two dimensional perspective provides the most natural extension to exhibit the role of these discrete functions as matrix elements that appear at the very foundation of the modern theory of classical discrete orthogonal polynomials. Here we present 2D and 1D recursion relations that are useful for the direct computation of the orthonormal 6j, which we name U. We present a convention for the order of the arguments of the 6j that is based on their classical and Regge symmetries, and a detailed investigation of new geometrical aspects of the 6j symbols. Specifically we compare the geometric recursion analysis of Schulten and Gordon with the methods of this paper. The 1D recursion relation, written as a matrix diagonalization problem, permits an interpretation as a discrete Schr\"odinger-like equations and an asymptotic analysis illustrates semiclassical and classical limits in terms of Hamiltonian evolution.Comment: 14 pages,9 figures, presented at ICCSA 2013 13th International Conference on Computational Science and Applicatio

    The Screen representation of spin networks. Images of 6j symbols and semiclassical features

    Full text link
    This article presents and discusses in detail the results of extensive exact calculations of the most basic ingredients of spin networks, the Racah coefficients (or Wigner 6j symbols), exhibiting their salient features when considered as a function of two variables - a natural choice due to their origin as elements of a square orthogonal matrix - and illustrated by use of a projection on a square "screen" introduced recently. On these screens, shown are images which provide a systematic classification of features previously introduced to represent the caustic and ridge curves (which delimit the boundaries between oscillatory and evanescent behaviour according to the asymptotic analysis of semiclassical approaches). Particular relevance is given to the surprising role of the intriguing symmetries discovered long ago by Regge and recently revisited; from their use, together with other newly discovered properties and in conjunction with the traditional combinatorial ones, a picture emerges of the amplitudes and phases of these discrete wavefunctions, of interest in wide areas as building blocks of basic and applied quantum mechanics.Comment: 16 pages, 13 figures, presented at ICCSA 2013 13th International Conference on Computational Science and Applicatio

    Collective multipole expansions and the perturbation theory in the quantum three-body problem

    Full text link
    The perturbation theory with respect to the potential energy of three particles is considered. The first-order correction to the continuum wave function of three free particles is derived. It is shown that the use of the collective multipole expansion of the free three-body Green function over the set of Wigner DD-functions can reduce the dimensionality of perturbative matrix elements from twelve to six. The explicit expressions for the coefficients of the collective multipole expansion of the free Green function are derived. It is found that the SS-wave multipole coefficient depends only upon three variables instead of six as higher multipoles do. The possible applications of the developed theory to the three-body molecular break-up processes are discussed.Comment: 20 pages, 2 figure

    Symplectic evolution of Wigner functions in markovian open systems

    Full text link
    The Wigner function is known to evolve classically under the exclusive action of a quadratic hamiltonian. If the system does interact with the environment through Lindblad operators that are linear functions of position and momentum, we show that the general evolution is the convolution of the classically evolving Wigner function with a phase space gaussian that broadens in time. We analyze the three generic cases of elliptic, hyperbolic and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which is shortest in the hyperbolic case. We also derive an exact formula for the evolving linear entropy as the average of a narrowing gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy.Comment: this new version treats the dissipative cas

    Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective

    Full text link
    A unified vision of the symmetric coupling of angular momenta and of the quantum mechanical volume operator is illustrated. The focus is on the quantum mechanical angular momentum theory of Wigner's 6j symbols and on the volume operator of the symmetric coupling in spin network approaches: here, crucial to our presentation are an appreciation of the role of the Racah sum rule and the simplification arising from the use of Regge symmetry. The projective geometry approach permits the introduction of a symmetric representation of a network of seven spins or angular momenta. Results of extensive computational investigations are summarized, presented and briefly discussed.Comment: 15 pages, 10 figures, presented at ICCSA 2014, 14th International Conference on Computational Science and Application

    Fredholm methods for billiard eigenfunctions in the coherent state representation

    Full text link
    We obtain a semiclassical expression for the projector onto eigenfunctions by means of the Fredholm theory. We express the projector in the coherent state basis, thus obtaining the semiclassical Husimi representation of the stadium eigenfunctions, which is written in terms of classical invariants: periodic points, their monodromy matrices and Maslov indices.Comment: 12 pages, 10 figures. Submitted to Phys. Rev. E. Comments or questions to [email protected]

    Shape Space Methods for Quantum Cosmological Triangleland

    Full text link
    With toy modelling of conceptual aspects of quantum cosmology and the problem of time in quantum gravity in mind, I study the classical and quantum dynamics of the pure-shape (i.e. scale-free) triangle formed by 3 particles in 2-d. I do so by importing techniques to the triangle model from the corresponding 4 particles in 1-d model, using the fact that both have 2-spheres for shape spaces, though the latter has a trivial realization whilst the former has a more involved Hopf (or Dragt) type realization. I furthermore interpret the ensuing Dragt-type coordinates as shape quantities: a measure of anisoscelesness, the ellipticity of the base and apex's moments of inertia, and a quantity proportional to the area of the triangle. I promote these quantities at the quantum level to operators whose expectation and spread are then useful in understanding the quantum states of the system. Additionally, I tessellate the 2-sphere by its physical interpretation as the shape space of triangles, and then use this as a back-cloth from which to read off the interpretation of dynamical trajectories, potentials and wavefunctions. I include applications to timeless approaches to the problem of time and to the role of uniform states in quantum cosmological modelling.Comment: A shorter version, as per the first stage in the refereeing process, and containing some new reference

    Imprints of the Quantum World in Classical Mechanics

    Full text link
    The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show Using no physical hypotheses) that the Schroedinger equation for a nonrelativistic system of spinless particles is a classical equation which is equivalent to Hamilton's equations.Comment: Paper submitted to Foundations of Physic

    Quantum Blobs

    Get PDF
    Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level sets defined by Fermi for the purpose of representing geometrically quantum states.Comment: Prepublication. Dedicated to Basil Hile
    corecore