2 research outputs found
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
Raman scattering investigation and symmetry analysis of ferroelectric/ferroelastic Sb5O7I polytype 2MA
The polytype 2MA (beta-Sb5O7I) has the simplest acentric structure of the antimony oxideiodide family. It undergoes an antiferrodistortive phase transition at 438K and is both ferroelectric and ferroelastic below that temperature. The complete polarized Raman spectra in the ferroic phase have been measured and compared with those of the ferroelastic, centric polytype 2MC (agr-Sb5O7I). Several lines could be attributed to Sb—0 and Sb—I vibrations. A factor group analysis has been performed and compatibility relations have been established connecting phonon species in the low and high temperature phase. As a function of temperature the spectra revealed a strongly temperature dependent central line and several phonon lines whose intensities vanish aboveT c . Using these phonon line intensities the temperature variation of the order parameter could be determined. The experimental results indicate that the phase transition is of first order