6 research outputs found
Interfacial spin structures in Pt/Tb3Fe5 O12 bilayer films on Gd3Ga5 O12 substrates
In this study, we investigate the properties of ferrimagnetic Tb3Fe5O12 (TbIG) thin films grown on Gd3Ga5O12 (GGG) substrates using the pulsed laser deposition technique. Some of the films are capped with a thin platinum (Pt) layer. We observe a strong temperature-dependent anomalous Hall effect in the films, with sign reversals at the ferrimagnetic compensation temperature (∼240K) and lower temperatures. X-ray diffraction and scanning transmission electron microscopy (STEM) confirm the high crystalline quality and smooth surfaces of the films, while the Pt layer is found to be polycrystalline. Polarized neutron reflectometry reveals a weak magnetic moment confined to the TbIG layer, and an interfacial magnetic layer at the substrate-film boundary appears at low temperatures (below 10 K). This observation is supported by STEM-energy dispersive x-ray mapping, which indicates a chemical difference in the ratio of Gd:Ga at the TbIG/GGG interface. Unlike YIG/GGG interfaces, the TbIG/GGG interface does not exhibit magnetic dead layers. Additionally, a small, induced magnetization is detected in the Pt heavy metal layer at low temperature, with ferromagnetic coupling to the garnet, potentially influencing the anomalous Hall effect
Ultra-small cobalt particles embedded in titania by ion beam synthesis: Additional datasets including electron microscopy, neutron reflectometry, modelling outputs and particle size analysis
This Data-in-brief article includes datasets of electron microscopy, polarised neutron reflectometry and magnetometry for ultra-small cobalt particles formed in titania thin films via ion beam synthesis. Raw data for polarised neutron reflectometry, magnetometry and the particle size distribution are included and made available on a public repository. Additional elemental maps from scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) are also presented. Data were obtained using the following types of equipment: the NREX and PLATYPUS polarised neutron reflectometers; a Quantum Design Physical Property Measurement System (14 T); a JEOL JSM-6490LV SEM, and a JEOL ARM-200F scanning transmission electron microscope (STEM). The data is provided as supporting evidence for the article in Applied Surface Science (A. Bake et al., Appl. Surf. Sci., vol. 570, p. 151068, 2021, DOI 10.1016/j.apsusc.2021.151068), where a full discussion is given. The additional supplementary reflectometry and modelling datasets are intended to assist future scientific software development of advanced fitting algorithms for magnetization gradients in thin films