1,139 research outputs found

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    Superconductivity in hole-doped C60 from electronic correlations

    Full text link
    We derive a model for the highest occupied molecular orbital band of a C60 crystal which includes on-site electron-electron interactions. The form of the interactions are based on the icosahedral symmetry of the C60 molecule together with a perturbative treatment of an isolated C60 molecule. Using this model we do a mean-field calculation in two dimensions on the [100] surface of the crystal. Due to the multi-band nature we find that electron-electron interactions can have a profound effect on the density of states as a function of doping. The doping dependence of the transition temperature can then be qualitatively different from that expected from simple BCS theory based on the density of states from band structure calculations

    Stationary distributions for diffusions with inert drift

    Get PDF
    Consider reflecting Brownian motion in a bounded domain in Rd{\mathbb R^d} that acquires drift in proportion to the amount of local time spent on the boundary of the domain. We show that the stationary distribution for the joint law of the position of the reflecting Brownian motion and the value of the drift vector has a product form. Moreover, the first component is uniformly distributed on the domain, and the second component has a Gaussian distribution. We also consider more general reflecting diffusions with inert drift as well as processes where the drift is given in terms of the gradient of a potential

    Magnetic order in spin-1 and spin-3/2 interpolating square-triangle Heisenberg antiferromagnets

    Full text link
    Using the coupled cluster method we investigate spin-ss J1J_{1}-J2J_{2}' Heisenberg antiferromagnets (HAFs) on an infinite, anisotropic, triangular lattice when the spin quantum number s=1s=1 or s=3/2s=3/2. With respect to a square-lattice geometry the model has antiferromagnetic (J1>0J_{1} > 0) bonds between nearest neighbours and competing (J2>0J_{2}' > 0) bonds between next-nearest neighbours across only one of the diagonals of each square plaquette, the same one in each square. In a topologically equivalent triangular-lattice geometry, we have two types of nearest-neighbour bonds: namely the J2κJ1J_{2}' \equiv \kappa J_{1} bonds along parallel chains and the J1J_{1} bonds producing an interchain coupling. The model thus interpolates between an isotropic HAF on the square lattice at κ=0\kappa = 0 and a set of decoupled chains at κ\kappa \rightarrow \infty, with the isotropic HAF on the triangular lattice in between at κ=1\kappa = 1. For both the s=1s=1 and the s=3/2s=3/2 models we find a second-order quantum phase transition at κc=0.615±0.010\kappa_{c}=0.615 \pm 0.010 and κc=0.575±0.005\kappa_{c}=0.575 \pm 0.005 respectively, between a N\'{e}el antiferromagnetic state and a helical state. In both cases the ground-state energy EE and its first derivative dE/dκdE/d\kappa are continuous at κ=κc\kappa=\kappa_{c}, while the order parameter for the transition (viz., the average on-site magnetization) does not go to zero on either side of the transition. The transition at κ=κc\kappa = \kappa_{c} for both the s=1s=1 and s=3/2s=3/2 cases is analogous to that observed in our previous work for the s=1/2s=1/2 case at a value κc=0.80±0.01\kappa_{c}=0.80 \pm 0.01. However, for the higher spin values the transition is of continuous (second-order) type, as in the classical case, whereas for the s=1/2s=1/2 case it appears to be weakly first-order in nature (although a second-order transition could not be excluded).Comment: 17 pages, 8 figues (Figs. 2-7 have subfigs. (a)-(d)

    A class of ansatz wave functions for 1D spin systems and their relation to DMRG

    Full text link
    We investigate the density matrix renormalization group (DMRG) discovered by White and show that in the case where the renormalization eventually converges to a fixed point the DMRG ground state can be simply written as a ``matrix product'' form. This ground state can also be rederived through a simple variational ansatz making no reference to the DMRG construction. We also show how to construct the ``matrix product'' states and how to calculate their properties, including the excitation spectrum. This paper provides details of many results announced in an earlier letter.Comment: RevTeX, 49 pages including 4 figures (macro included). Uuencoded with uufiles. A complete postscript file is available at http://fy.chalmers.se/~tfksr/prb.dmrg.p

    Experimental preparation of Werner state via spontaneous parametric down-conversion

    Full text link
    We present an experiment of preparing Werner state via spontaneous parametric down-conversion and controlled decoherence of photons in this paper. In this experiment two independent BBO (beta-barium borate) crystals are used to produce down-conversion light beams, which are mixed to prepare Werner state.Comment: 6 pages, 4 figures and 2 table
    corecore