196 research outputs found
Recommended from our members
High speed induction motor and inverter drive for flywheel energy storage
The use of flywheels to store energy is a technology which is centuries old. The confluence of several modern technologies has resulted in flywheels becoming a viable solution for the needs of the transportation, electric utility, and aerospace industries. This paper discusses a high-speed induction motor and its associated inverter drive which were developed for the Federal Railroad Administration’s “Advanced Locomotive Propulsion System.” The design of the induction motor provided several significant challenges. A megawatt rated, 12,000 rpm motor operating at a rotor surface velocity speed of 230 m/s required a unique mechanical configuration to withstand the centrifugal forces as well as an electromagnetic design, which produced a high efficiency at 200 Hz. Extending the design practices used in smaller motors would not achieve the goals required for a megawatt size machine. Similarly, the inverter was developed using a soft switching technique in order to meet the demands of high power output in a compact package. Application requirements, electrical and mechanical features of the motor, design strategy for the inverter, and test results are all presented in this paper.Center for Electromechanic
The quantum world is not built up from correlations
It is known that the global state of a composite quantum system can be
completely determined by specifying correlations between measurements performed
on subsystems only. Despite the fact that the quantum correlations thus suffice
to reconstruct the quantum state, we show, using a Bell inequality argument,
that they cannot be regarded as objective local properties of the composite
system in question. It is well known since the work of J.S. Bell, that one
cannot have locally preexistent values for all physical quantities, whether
they are deterministic or stochastic. The Bell inequality argument we present
here shows this is also impossible for correlations among subsystems of an
individual isolated composite system. Neither of them can be used to build up a
world consisting of some local realistic structure. As a corrolary to the
result we argue that entanglement cannot be considered ontologically robust.
The argument has an important advantage over others because it does not need
perfect correlations but only statistical correlations. It can therefore easily
be tested in currently feasible experiments using four particle entanglement.Comment: Published version. Title change
Electromagnetic transitions of the helium atom in superstrong magnetic fields
We investigate the electromagnetic transition probabilities for the helium
atom embedded in a superstrong magnetic field taking into account the finite
nuclear mass. We address the regime \gamma=100-10000 a.u. studying several
excited states for each symmetry, i.e. for the magnetic quantum numbers
0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry.
The oscillator strengths as a function of the magnetic field, and in particular
the influence of the finite nuclear mass on the oscillator strengths are shown
and analyzed.Comment: 10 pages, 8 figure
String-localized Quantum Fields and Modular Localization
We study free, covariant, quantum (Bose) fields that are associated with
irreducible representations of the Poincar\'e group and localized in
semi-infinite strings extending to spacelike infinity. Among these are fields
that generate the irreducible representations of mass zero and infinite spin
that are known to be incompatible with point-like localized fields. For the
massive representation and the massless representations of finite helicity, all
string-localized free fields can be written as an integral, along the string,
of point-localized tensor or spinor fields. As a special case we discuss the
string-localized vector fields associated with the point-like electromagnetic
field and their relation to the axial gauge condition in the usual setting.Comment: minor correction
Generalizations of entanglement based on coherent states and convex sets
Unentangled pure states on a bipartite system are exactly the coherent states
with respect to the group of local transformations. What aspects of the study
of entanglement are applicable to generalized coherent states? Conversely, what
can be learned about entanglement from the well-studied theory of coherent
states? With these questions in mind, we characterize unentangled pure states
as extremal states when considered as linear functionals on the local Lie
algebra. As a result, a relativized notion of purity emerges, showing that
there is a close relationship between purity, coherence and (non-)entanglement.
To a large extent, these concepts can be defined and studied in the even more
general setting of convex cones of states. Based on the idea that entanglement
is relative, we suggest considering these notions in the context of partially
ordered families of Lie algebras or convex cones, such as those that arise
naturally for multipartite systems. The study of entanglement includes notions
of local operations and, for information-theoretic purposes, entanglement
measures and ways of scaling systems to enable asymptotic developments. We
propose ways in which these may be generalized to the Lie-algebraic setting,
and to a lesser extent to the convex-cones setting. One of our original
motivations for this program is to understand the role of entanglement-like
concepts in condensed matter. We discuss how our work provides tools for
analyzing the correlations involved in quantum phase transitions and other
aspects of condensed-matter systems.Comment: 37 page
Many body physics from a quantum information perspective
The quantum information approach to many body physics has been very
successful in giving new insight and novel numerical methods. In these lecture
notes we take a vertical view of the subject, starting from general concepts
and at each step delving into applications or consequences of a particular
topic. We first review some general quantum information concepts like
entanglement and entanglement measures, which leads us to entanglement area
laws. We then continue with one of the most famous examples of area-law abiding
states: matrix product states, and tensor product states in general. Of these,
we choose one example (classical superposition states) to introduce recent
developments on a novel quantum many body approach: quantum kinetic Ising
models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of
correlated electron systems". Improved version new references adde
The Drosophila melanogaster Genetic Reference Panel
A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics
- …