7 research outputs found
Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.)
The expressions of trypsin and chymotrypsin in the pyloric caeca of Atlantic salmon (Salmo salar L.) were studied in three experiments. Two internal (trypsin phenotypes, life stages) and three common external factors (starvation, feeding, temperatures) influencing growth rates were varied. Growth was stimulated by increased temperature and higher feeding rate, and it was depressed during starvation. The interaction between trypsin phenotype and start-feeding temperature affected specific activity of trypsin, but not of chymotrypsin. Trypsin specific activity and the activity ratio of trypsin to chymotrypsin (T/C ratio) increased when growth was promoted. Chymotrypsin specific activity, on the other hand, increased when there was a reduction in growth rate whereas fish with higher growth had higher chymotrypsin specific activity resulting in lower T/C ratio value. During a rapid growth phase, trypsin specific activity did not correlate with chymotrypsin specific activity. On the other hand, a relationship between specific activities of trypsin and chymotrypsin could be observed when growth declined, such as during food deprivation. Trypsin is the sensitive key protease under conditions favouring growth and genetically and environmentally affected, while chymotrypsin plays a major role when growth is limited or depressed. Trypsin specific activity and the T/C ratio value are shown to be important factors in the digestion process affecting growth rate, and could be applicable as indicators for growth studies of fish in captive cultures and in the wild, especially when food consumption rate cannot be measured
Mapping and QTL analysis of the barley population Tallon × Kaputar
A genetic map of barley with 224 AFLP and 39 simple sequence repeat (SSR) markers was constructed using a doubled haploid (DH) mapping population from a cross between the varieties Tallon and Kaputar. Linkage groups were assigned to individual barley chromosomes using the published map locations of the SSR markers as reference points. This genetic map was used to identify markers with linkage to agronomic, disease, and quality traits in barley. The population, which comprised 65 lines, was tested in a range of environments across Australia. Quantitative trait loci (QTLs) analyses were performed using software packages MapMaker, MapManager, and Qgene. Significant associations with markers were found for several traits. Grain yield showed significant association with regions on chromosomes 2H, 3H, and 5H over a range of sites throughout Australia. Regions on chromosomes 2H and 3H explained 30% and 26% of variation in lodging, respectively. Among quality traits, diastatic power was associated with regions on chromosomes 1H, 2H, and 5H (R2 = 37%). Hot water extract was associated with a region on chromosome 6H and a marker not assigned to a chromosome (R2 = 45%). There were also environment-specific QTLs for the traits analysed. The markers identified here present an opportunity for marker assisted selection of lines for these traits in barley breeding programs