13 research outputs found

    Dioxygenase-catalyzed cis-dihydroxylation of pyridine-ring systems

    No full text
    Toluene dioxygenase-catalyzed dihydroxylation, in the carbocyclic rings of quinoline, 2-chloroquinoline, 2-methoxyquinoline, and 3-bromoquinoline, was found to yield the corresponding enantiopure cis-5,6- and -7,8-dihydrodiol metabolites using whole cells of Pseudomonas putida UV4. cis-Dihydroxylation at the 3,4-bond of 2-chloroquinoline, 2-methoxyquinoline, and 2-quinolone was also found to yield the heterocyclic cis-dihydrodiol metabolite, (+)-cis-(3S,4S)-3,4-dihydroxy-3,4-dihydro-2-quinolone. Heterocyclic cis-dihydrodiol metabolites, resulting from dihydroxylation at the 5,6- and 3,4-bonds of 1-methyl 2-pyridone, were isolated from bacteria containing toluene, naphthalene, and biphenyl dioxygenases. The enantiomeric excess (ee) values (>98%) and the absolute configurations of the carbocyclic cis-dihydrodiol metabolites of quinoline substrates (benzylic R) and of the heterocyclic cis-diols from quinoline, 2-quinolone, and 2-pyridone substrates (allylic S) were found to be in accord with earlier models for dioxygenase-catalyzed cis-dihydroxylation of carbocyclic arenes. Evidence favouring the dioxygenase-catalyzed cis-dihydroxylation of pyridine-ring systems is presented

    Aromatic Ring Hydroxylating Dioxygenases

    No full text

    Styrene, an Unpalatable Substrate with Complex Regulatory Networks

    No full text
    Styrene, a volatile organic compound (VOC), is an important industrial material involved in the production of plastic, synthetic rubber and resin, insulation and other industrial materials containing molecules such as polystyrene, butadiene-styrene latex, styrene copolymers and unsaturated polyester resins. Styrene exposure may cause contact-based skin inflammation, irritation of eyes, nose and respiratory tract. Neurological effects such as alterations in vision, hearing loss and longer reaction times, have been associated with styrene exposure in the workplace. In addition, styrene oxide may act as an established mutagen and carcinogen (www.epa.gov/chemfact/styre-sd.pdf). It has been reported that, in 2002, 22,323 tons of styrene were released to the environment (82), in spite of the US Clean Air Act mandate on reduction in the volume of allowable styrene emission (www.epa.gov/chemfact/styre-sd.pdf). Among a variety of emerging air pollution technologies, biofiltration is an attractive option for the treatment of VOCs, because it is cost-effective and does not generate secondary contaminants (45). Moreover, microbial biodegradation is the major route for the removal of non-aqueous compounds from soils. Styrene is also naturally present in non polluted environments, since it derives from fungal decarboxylation of cinnamic acid (90). Therefore it is not surprising that microorganisms of different families have been found to be able to degrade this compound (31). The promising results obtained in the removal of styrene from contaminated waste-gases by biofiltration (5, 39, 103) have led to an increasing attention to the regulatory mechanisms underlying styrene degradation, with the aim to improve bioremediation processes. Despite the diffusion in nature of this degradative capability, only few strains, mainly belonging to the Pseudomonas genus, have been characterized (66). This chapter is focused on the up-to-now discovered regulatory mechanisms underlying the expression of the styrene-catabolism genes. Moreover, open questions on environmental and metabolic constrains that govern styrene degradation are discussed. Biotechnological relevance of styrene-degrading strains in fine chemicals production and bioremediation processes is not examined here. Main topics on these application fields have recently been reviewed by Dobson and co-workers (66)

    The enzymatic basis for pesticide bioremediation

    No full text
    Enzymes are central to the biology of many pesticides, influencing their modes of action, environmental fates and mechanisms of target species resistance. Since the introduction of synthetic xenobiotic pesticides, enzymes responsible for pesticide turnover have evolved rapidly, in both the target organisms and incidentally exposed biota. Such enzymes are a source of significant biotechnological potential and form the basis of several bioremediation strategies intended to reduce the environmental impacts of pesticide residues. This review describes examples of enzymes possessing the major activities employed in the bioremediation of pesticide residues, and some of the strategies by which they are employed. In addition, several examples of specific achievements in enzyme engineering are considered, highlighting the growing trend in tailoring enzymatic activity to a specific biotechnologically relevant function

    Biological assessment and remediation of contaminated sediments

    No full text

    The Catabolism of Phenylacetic Acid and Other Related Molecules in Pseudomonas putida U

    No full text
    corecore