8 research outputs found
Age at first birth in women is genetically associated with increased risk of schizophrenia
Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
A Putative ‘Pre-Nervous’ Endocannabinoid System in Early Echinoderm Development
Embryos and larvae of sea urchins (Lytechinus variegatus, Strongylocentrotus droebachiensis, Strongylocentrotus purpuratus, Dendraster excentricus), and starfish (Pisaster ochraceus) were investigated for the presence of a functional endocannabinoid system. Anandamide (arachidonoyl ethanolamide, AEA), was measured in early L. variegatus embryos by liquid chromatography/mass spectrometry. AEA showed a strong developmental dynamic, increasing more than 5-fold between the 8–16 cell and mid-blastula 2 stage. ‘Perturb-and-rescue’ experiments in different sea urchin species and starfish showed that AEA blocked transition of embryos from the blastula to the gastrula stage, but had no effect on cleavage divisions, even at high doses. The non-selective cannabinoid receptor agonist, CP55940, had similar effects, but unlike AEA, also blocked cleavage divisions. CB1 antagonists, AEA transport inhibitors, and the cation channel transient membrane potential receptor V1 (TrpV1) agonist, arachidonoyl vanillic acid (arvanil), as well as arachidonoyl serotonin and dopamine (AA-5-HT, AA-DA) acted as rescue substances, partially or totally preventing abnormal embryonic phenotypes elicited by AEA or CP55940. Radioligand binding of [3H]CP55940 to membrane preparations from embryos/larvae failed to show significant binding, consistent with the lack of CB receptor orthologs in the sea urchin genome. However, when binding was conducted on whole cell lysates, a small amount of [3H]CP55940 binding was observed at the pluteus stage that was displaced by the CB2 antagonist, SR144528. Since AEA is known to bind with high affinity to TrpV1 and to certain G-protein-coupled receptors (GPCRs), the ability of arvanil, AA-5-HT and AA-DA to rescue embryos from AEA teratogenesis suggests that in sea urchins AEA and other endocannabinoids may utilize both Trp and GPCR orthologs. This possibility was explored using bioinformatic and phylogenetic tools to identify candidate orthologs in the S. purpuratus sea urchin genome. Candidate TrpA1 and TrpV1 orthologs were identified. The TrpA1 ortholog fell within a monophyletic clade, including both vertebrate and invertebrate orthologs, whereas the TrpV1 orthologs fell within two distinct TrpV-like invertebrate clades. One of the sea urchin TrpV orthologs was more closely related to the vertebrate epithelial calcium channels (TrpV5-6 family) than to the vertebrate TrpV1-4 family, as determined using profile-hidden Markov model (HMM) searches. Candidate dopamine and adrenergic GPCR orthologs were identified in the sea urchin genome, but no cannabinoid GPCRs were found, consistent with earlier studies. Candidate dopamine D1, D2 or α1-adrenergic receptor orthologs were identified as potential progenitors to the vertebrate cannabinoid receptors using HMM searches, depending on whether the multiple sequence alignment of CB receptor sequences consisted only of urochordate and cephalochordate sequences or also included vertebrate sequences
Genetic correlation between amyotrophic lateral sclerosis and schizophrenia
We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P=1 × 10) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies
Emulsion sheet doublets as interface trackers for the OPERA experiment
New methods for efficient and unambiguous interconnection between electronic position sensitive detectors and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment,that aims at detecting Vμ⇋Vτoscillations in the CNGS neutrino beam,is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector,on-site large-scale treatments of the emulsions (“refreshing”) have been applied. Changeable Sheet (CSd) packages,each made of a doublet of emulsion films,have been designed,assembled and coupled to the OPERA target units (“ECC bricks”). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies. © 2022. The Author(s), under exclusive licence to Springer Nature Limited