23 research outputs found

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Advective Fluxes in the Martian Regolith as a Mechanism Driving Methane and Other Trace Gas Emissions to the Atmosphere

    No full text
    Advective fluxes influence methane and CO soil emissions into the atmosphere on Earth and may drive trace gas emissions in the Mars atmosphere. However, their relevance in the Martian regolith has not been evaluated to date. Our regolith transport simulations show that advective fluxes can be relevant under Martian conditions and may drive the methane abundance detected by Mars Science Laboratory. Trace gas emissions would be highest in regions where winds interact with topography. Emissions in these regions may be further enhanced by time-varying pressure fields produced by diurnal thermal tides and atmospheric turbulence. Trace gases such as methane should be emitted or produced from the first layers of regolith, or quickly transported to this region from a deeper reservoir through fractured media.Vasavada, A.R

    Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations

    No full text
    Key Points Because of ongoing aeolian activity, the Bagnold dunes consist of well-sorted sands and lack the finer grains typical of martian soils Dune sands are chemically distinct with elevated Si, Mg, and Ni and lower H2O, S, and Cl relative to all previously measured martian fines Two distinct, water/OH-bearing amorphous components are identified: Fe-, S-, Cl- rich material in dust and Si-rich material in the sand

    The Mars Atmosphere and Volatile Evolution (MAVEN) Mission

    No full text
    The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter’s science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth

    The Sample Analysis at Mars Investigation and Instrument Suite

    Get PDF
    International audienceThe Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm
    corecore