148 research outputs found
Weyl formulas for annular ray-splitting billiards
We consider the distribution of eigenvalues for the wave equation in annular
(electromagnetic or acoustic) ray-splitting billiards. These systems are
interesting in that the derivation of the associated smoothed spectral counting
function can be considered as a canonical problem. This is achieved by
extending a formalism developed by Berry and Howls for ordinary (without
ray-splitting) billiards. Our results are confirmed by numerical computations
and permit us to infer a set of rules useful in order to obtain Weyl formulas
for more general ray-splitting billiards
Structure and dynamics of Rh surfaces
Lattice relaxations, surface phonon spectra, surface energies, and work
functions are calculated for Rh(100) and Rh(110) surfaces using
density-functional theory and the full-potential linearized augmented plane
wave method. Both, the local-density approximation and the generalized gradient
approximation to the exchange-correlation functional are considered. The force
constants are obtained from the directly calculated atomic forces, and the
temperature dependence of the surface relaxation is evaluated by minimizing the
free energy of the system. The anharmonicity of the atomic vibrations is taken
into account within the quasiharmonic approximation. The importance of
contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15
(1998). Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
First-principles study of the ferroelastic phase transition in CaCl_2
First-principles density-functional calculations within the local-density
approximation and the pseudopotential approach are used to study and
characterize the ferroelastic phase transition in calcium chloride (CaCl_2). In
accord with experiment, the energy map of CaCl_2 has the typical features of a
pseudoproper ferroelastic with an optical instability as ultimate origin of the
phase transition. This unstable optic mode is close to a pure rigid unit mode
of the framework of chlorine atoms and has a negative Gruneisen parameter. The
ab-initio ground state agrees fairly well with the experimental low temperature
structure extrapolated at 0K. The calculated energy map around the ground state
is interpreted as an extrapolated Landau free-energy and is successfully used
to explain some of the observed thermal properties. Higher-order anharmonic
couplings between the strain and the unstable optic mode, proposed in previous
literature as important terms to explain the soft-phonon temperature behavior,
are shown to be irrelevant for this purpose. The LAPW method is shown to
reproduce the plane-wave results in CaCl_2 within the precision of the
calculations, and is used to analyze the relative stability of different phases
in CaCl_2 and the chemically similar compound SrCl_2.Comment: 9 pages, 6 figures, uses RevTeX
Understanding preventive behaviors among mid-Western African-American men: a pilot qualitative study of prostate screening
http://dx.doi.org/10.1016/j.jomh.2011.03.00
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …