41 research outputs found

    Probabilistically Accurate Program Transformations

    Get PDF
    18th International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. ProceedingsThe standard approach to program transformation involves the use of discrete logical reasoning to prove that the transformation does not change the observable semantics of the program. We propose a new approach that, in contrast, uses probabilistic reasoning to justify the application of transformations that may change, within probabilistic accuracy bounds, the result that the program produces. Our new approach produces probabilistic guarantees of the form ℙ(|D| ≥ B) ≤ ε, ε ∈ (0, 1), where D is the difference between the results that the transformed and original programs produce, B is an acceptability bound on the absolute value of D, and ε is the maximum acceptable probability of observing large |D|. We show how to use our approach to justify the application of loop perforation (which transforms loops to execute fewer iterations) to a set of computational patterns.National Science Foundation (U.S.) (Grant CCF-0811397)National Science Foundation (U.S.) (Grant CCF-0905244)National Science Foundation (U.S.) (Grant CCF-1036241)National Science Foundation (U.S.) (Grant IIS-0835652)United States. Dept. of Energy (Grant DE-SC0005288

    Complete integer decision procedures as derived rules in HOL

    No full text
    Abstract. I describe the implementation of two complete decision procedures for integer Presburger arithmetic in the HOL theorem-proving system. The first procedure is Cooper’s algorithm, the second, the Omega Test. Between them, the algorithms illustrate three different implementation techniques in a fully expansive system.
    corecore