15 research outputs found

    Isotope shift calculations for atoms with one valence electron

    Full text link
    This work presents a method for the ab initio calculation of isotope shift in atoms and ions with one valence electron above closed shells. As a zero approximation we use relativistic Hartree-Fock and then calculate correlation corrections. The main motivation for developing the method comes from the need to analyse whether different isotope abundances in early universe can contribute to the observed anomalies in quasar absorption spectra. The current best explanation for these anomalies is the assumption that the fine structure constant, alpha, was smaller at early epoch. We test the isotope shift method by comparing the calculated and experimental isotope shift for the alkali and alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be good. We then calculate the isotope shift for some astronomically relevant transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page

    Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra

    Full text link
    [Abridged] We previously presented evidence for a varying fine-structure constant, alpha, in two independent samples of Keck/HIRES QSO spectra. Here we present a detailed many-multiplet analysis of a third Keck/HIRES sample containing 78 absorption systems. We also re-analyse the previous samples, providing a total of 128 absorption systems over the redshift range 0.2<z_abs<3.7. All three samples separately yield consistent, significant values of da/a. The analyses of low- and high-z systems rely on different ions/transitions with very different dependencies on alpha, yet they also give consistent results. We identify additional random errors in 22 high-z systems characterized by transitions with a large dynamic range in apparent optical depth. Increasing the statistical errors on da/a for these systems gives our fiducial result, a weighted mean da/a=(-0.543+/-0.116)x10^-5, representing 4.7-sigma evidence for a smaller weighted mean alpha in the absorption clouds. Assuming that da/a=0 at z_abs=0, the data marginally prefer a linear increase in alpha with time: dota/a=(6.40+/-1.35)x10^-16 yr^-1. The two-point correlation function for alpha is consistent with zero over 0.2-13 Gpc comoving scales and the angular distribution of da/a shows no significant dipolar anisotropy. We therefore have no evidence for spatial variations in da/a. We extend our previous searches for possible systematic errors, identifying atmospheric dispersion and isotopic structure effects as potentially the most significant. However, overall, known systematic errors do not explain the results. Future many-multiplet analyses of QSO spectra from different telescopes and spectrographs will provide a now crucial check on our Keck/HIRES results.Comment: 31 pages, 25 figures (29 EPS files), 8 tables. Accepted by MNRAS. Colour versions of Figs. 6, 8 & 10 and text version of Table 3 available at http://www.ast.cam.ac.uk/~mim/pub.htm

    LASER COOLED, STORED ION EXPERIMENTS AT NBS AND POSSIBLE APPLICATIONS TO MICROWAVE AND OPTICAL FREQUENCY STANDARDS

    No full text
    Research on stored ion frequency standards at the United States National Bureau of Standards is briefly discussed. We summarize past work and indicate directions of future research
    corecore