60 research outputs found
Controlling anomalous stresses in soft field-responsive systems
We report a new phenomenon occurring in field-responsive suspensions:
shear-induced anomalous stresses. Competition between a rotating field and a
shear flow originates a multiplicity of anomalous stress behaviors in
suspensions of bounded dimers constituted by induced dipoles. The great variety
of stress regimes includes non-monotonous behaviors, multi-resonances, negative
viscosity effect and blockades. The reversibility of the transitions between
the different regimes and the self-similarity of the stresses make this
phenomenon controllable and therefore applicable to modify macroscopic
properties of soft condensed matter phasesComment: 5 pages, 6 figures, submitted to PR
Ferrohydrodynamics: testing a new magnetization equation
A new magnetization equation recently derived from irreversible
thermodynamics is employed to the calculation of an increase of ferrofluid
viscosity in a magnetic field. Results of the calculations are compared with
those obtained on the basis of two well-known magnetization equations. One of
the two was obtained phenomenologically, another one was derived
microscopically from the Fokker-Planck equation. It is shown that the new
magnetization equation yields a quite satisfactory description of
magnetiviscosity in the entire region of magnetic field strength and the flow
vorticity. This equation turns out to be valid -- like the microscopically
derived equation but unlike the former phenomenological equation -- even far
from equilibrium, and so it should be recommended for further applications.Comment: 4 pages, 3 figures, Submitted to Phys. Rev.
Fluctuation-Induced Interactions between Rods on a Membrane
We consider the interaction between two rods embedded in a fluctuating
surface. The modification of fluctuations by the rods leads to an attractive
long-range interaction between them. We consider fluctuations governed by
either surface tension (films) or bending rigidity (membranes). In both cases
the interaction falls off with the separation of the rods as . The
orientational part of the interaction is proportional to in the former case, and to in the latter, where and
are angles between the rods and the line joining them. These
interactions are somewhat reminiscent of dipolar forces and will tend to align
collections of such rods into chains.Comment: REVTEX, 14 pages, with 2 Postscript figure
Stability of periodic domain structures in a two-dimensional dipolar model
We investigate the energetic ground states of a model two-phase system with
1/r^3 dipolar interactions in two dimensions. The model exhibits spontaneous
formation of two kinds of periodic domain structure. A striped domain structure
is stable near half filling, but as the area fraction is changed, a transition
to a hexagonal lattice of almost-circular droplets occurs. The stability of the
equilibrium striped domain structure against distortions of the boundary is
demonstrated, and the importance of hexagonal distortions of the droplets is
quantified. The relevance of the theory for physical surface systems with
elastic, electrostatic, or magnetostatic 1/r^3 interactions is discussed.Comment: Revtex (preprint style, 19 pages) + 4 postscript figures. A version
in two-column article style with embedded figures is available at
http://electron.rutgers.edu/~dhv/preprints/index.html#ng_do
Thermodynamics of the Stockmayer fluid in an applied field
The thermodynamic properties of the Stockmayer fluid in an applied field are studied using theory and computer simulation. Theoretical expressions for the second and third virial coefficients are obtained in terms of the dipolar coupling constant (, measuring the strength of dipolar interactions as compared to thermal energy) and dipole-field interaction energy (α, being proportional to the applied field strength). These expressions are tested against numerical results obtained by Mayer sampling calculations. The expression for the second virial coefficient contains terms up to λ4, and is found to be accurate over realistic ranges of dipole moment and temperature, and over the entire range of the applied field strength (from zero to infinity). The corresponding expression for the third virial coefficient is truncated at λ3, and is not very accurate: higher order terms are very difficult to calculate. The virial coefficients are incorporated in to a thermodynamic theory based on a logarithmic representation of the Helmholtz free energy. This theory is designed to retain the input virial coefficients, and account for some higher order terms in the sense of a resummation. The compressibility factor is obtained from the theory and compared to results from molecular dynamics simulations with a typical value λ = 1. Despite the mathematical approximations of the virial coefficients, the theory captures the effects of the applied field very well. Finally, the vapour-liquid critical parameters are determined from the theory, and compared to published simulation results; the agreement between the theory and simulations is good. © 2015 Taylor & Francis
Granular Solid Hydrodynamics
Granular elasticity, an elasticity theory useful for calculating static
stress distribution in granular media, is generalized to the dynamic case by
including the plastic contribution of the strain. A complete hydrodynamic
theory is derived based on the hypothesis that granular medium turns
transiently elastic when deformed. This theory includes both the true and the
granular temperatures, and employs a free energy expression that encapsulates a
full jamming phase diagram, in the space spanned by pressure, shear stress,
density and granular temperature. For the special case of stationary granular
temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity},
a state-of-the-art engineering model.Comment: 42 pages 3 fi
- …