68 research outputs found
Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory
We investigate the possibility of assigning consistent probabilities to sets
of histories characterized by whether they enter a particular subspace of the
Hilbert space of a closed system during a given time interval. In particular we
investigate the case that this subspace is a region of the configuration space.
This corresponds to a particular class of coarse grainings of spacetime
regions. We consider the arrival time problem and the problem of time in
reparametrization invariant theories as for example in canonical quantum
gravity. Decoherence conditions and probabilities for those application are
derived. The resulting decoherence condition does not depend on the explicit
form of the restricted propagator that was problematic for generalizations such
as application in quantum cosmology. Closely related is the problem of
tunnelling time as well as the quantum Zeno effect. Some interpretational
comments conclude, and we discuss the applicability of this formalism to deal
with the arrival time problem.Comment: 23 pages, Few changes and added references in v
Consistent histories of systems and measurements in spacetime
Traditional interpretations of quantum theory in terms of wave function
collapse are particularly unappealing when considering the universe as a whole,
where there is no clean separation between classical observer and quantum
system and where the description is inherently relativistic. As an alternative,
the consistent histories approach provides an attractive "no collapse"
interpretation of quantum physics. Consistent histories can also be linked to
path-integral formulations that may be readily generalized to the relativistic
case. A previous paper described how, in such a relativistic spacetime path
formalism, the quantum history of the universe could be considered to be an
eignestate of the measurements made within it. However, two important topics
were not addressed in detail there: a model of measurement processes in the
context of quantum histories in spacetime and a justification for why the
probabilities for each possible cosmological eigenstate should follow Born's
rule. The present paper addresses these topics by showing how Zurek's concepts
of einselection and envariance can be applied in the context of relativistic
spacetime and quantum histories. The result is a model of systems and
subsystems within the universe and their interaction with each other and their
environment.Comment: RevTeX 4; 37 pages; v2 is a revision in response to reviewer
comments, connecting the discussion in the paper more closely to consistent
history concepts; v3 has minor editorial corrections; accepted for
publication in Foundations of Physics; v4 has a couple minor typographical
correction
Quantum Cosmological Multidimensional Einstein-Yang-Mills Model in a Topology
The quantum cosmological version of the multidimensional Einstein-Yang-Mills
model in a topology is studied in the framework of
the Hartle-Hawking proposal. In contrast to previous work in the literature, we
consider Yang-Mills field configurations with non-vanishing time-dependent
components in both and spaces. We obtain stable compactifying
solutions that do correspond to extrema of the Hartle-Hawking wave function of
the Universe. Subsequently, we also show that the regions where 4-dimensional
metric behaves classically or quantum mechanically (i.e. regions where the
metric is Lorentzian or Euclidean) will depend on the number, , of compact
space dimensions.Comment: Plain Latex. Version that appeared in the October 15th, 1997 issue of
Physical Review
- …