4 research outputs found

    Theory of spin-polarized bipolar transport in magnetic p-n junctions

    Full text link
    The interplay between spin and charge transport in electrically and magnetically inhomogeneous semiconductor systems is investigated theoretically. In particular, the theory of spin-polarized bipolar transport in magnetic p-n junctions is formulated, generalizing the classic Shockley model. The theory assumes that in the depletion layer the nonequilibrium chemical potentials of spin up and spin down carriers are constant and carrier recombination and spin relaxation are inhibited. Under the general conditions of an applied bias and externally injected (source) spin, the model formulates analytically carrier and spin transport in magnetic p-n junctions at low bias. The evaluation of the carrier and spin densities at the depletion layer establishes the necessary boundary conditions for solving the diffusive transport equations in the bulk regions separately, thus greatly simplifying the problem. The carrier and spin density and current profiles in the bulk regions are calculated and the I-V characteristics of the junction are obtained. It is demonstrated that spin injection through the depletion layer of a magnetic p-n junction is not possible unless nonequilibrium spin accumulates in the bulk regions--either by external spin injection or by the application of a large bias. Implications of the theory for majority spin injection across the depletion layer, minority spin pumping and spin amplification, giant magnetoresistance, spin-voltaic effect, biasing electrode spin injection, and magnetic drift in the bulk regions are discussed in details, and illustrated using the example of a GaAs based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table

    Spin-polarized current in a Rashba ring pumped by a microwave field

    No full text
    We report a theoretical study on generation of a spin polarized charge current with arbitrary spin polarization, including the fully-spin-polarized current. In a two-terminal mesoscopic ring device, the Rashba spin-orbit coupling (RSOC) is considered as well as a microwave field applied on one of arms of the ring. It is shown that at zero external bias a spin current can be produced in addition to the usual charge current pumped by the microwave field, which is attributed to the the quantum interference effect of the RSOC induced spin precession phase. By varying the system parameters such as the microwave frequency and the RSOC strength, not only the magnitude but also the direction of the spin current can be efficiently controlled, moreover, the spin-polarization degree of the charge current can readily be tuned by these system parameters in the range [-1,1]. Since all the parameters can be controlled electrically in our study, the proposed device may shed light on the possibility of an all-electrical generation and tuning of a spin-polarized current in the field of the spintronics. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010
    corecore