2 research outputs found
Bias and temperature dependence of the 0.7 conductance anomaly in Quantum Point Contacts
The 0.7 (2e^2/h) conductance anomaly is studied in strongly confined, etched
GaAs/GaAlAs quantum point contacts, by measuring the differential conductance
as a function of source-drain and gate bias as well as a function of
temperature. We investigate in detail how, for a given gate voltage, the
differential conductance depends on the finite bias voltage and find a
so-called self-gating effect, which we correct for. The 0.7 anomaly at zero
bias is found to evolve smoothly into a conductance plateau at 0.85 (2e^2/h) at
finite bias. Varying the gate voltage the transition between the 1.0 and the
0.85 (2e^2/h) plateaus occurs for definite bias voltages, which defines a gate
voltage dependent energy difference . This energy difference is
compared with the activation temperature T_a extracted from the experimentally
observed activated behavior of the 0.7 anomaly at low bias. We find \Delta =
k_B T_a which lends support to the idea that the conductance anomaly is due to
transmission through two conduction channels, of which the one with its subband
edge \Delta below the chemical potential becomes thermally depopulated as the
temperature is increased.Comment: 9 pages (RevTex) with 9 figures (some in low resolution