1,149 research outputs found
Geometric analysis of minimum time trajectories for a two-level quantum system
We consider the problem of controlling in minimum time a two-level quantum
system which can be subject to a drift. The control is assumed to be bounded in
magnitude, and to affect two or three independent generators of the dynamics.
We describe the time optimal trajectories in , the Lie group of possible
evolutions for the system, by means of a particularly simple parametrization of
the group. A key ingredient of our analysis is the introduction of the optimal
front line. This tool allows us to fully characterize the time-evolution of the
reachable sets, and to derive the worst-case operators and the corresponding
times. The analysis is performed in any regime: controlled dynamics stronger,
of the same magnitude or weaker than the drift term, and gives a method to
synthesize quantum logic operations on a two-level system in minimum time.Comment: 27 pages. Formulas (75), (76) and (78) have been correcte
Imaging Findings of Cerebral Amyloid Angiopathy, A\u3b2-Related Angiitis (ABRA), and Cerebral Amyloid Angiopathy-Related Inflammation
Vascular inflammation is present in a subset of patients with cerebral amyloid angiopathy (CAA) and has a major influence in determining the disease manifestations. Radiological characterization of this subset is particularly important to achieve early recognition and treatment. We conducted this study to investigate the role of imaging in differentiating CAA with and without inflammation. We reviewed neuroimaging findings for 54 patients seen at Mayo Clinic over 25 years with pathological evidence of CAA and with available neuroimaging at the time of diagnosis. Clinical data were also recorded. Patients were grouped into CAA alone (no vascular inflammation), A\u3b2-related angiitis or ABRA (angiodestructive inflammation), and CAA-related inflammation or CAA-RI (perivascular inflammation). Imaging findings at presentation were compared among patient subgroups. Radiological features supporting a diagnosis of ABRA or CAA-RI were identified. Radiologic findings at diagnosis were available in 27 patients with CAA without inflammation, 22 with ABRA, and 5 with CAA-RI. On MRI, leptomeningeal disease alone or with infiltrative white matter was significantly more frequent at presentation in patients with ABRA or CAA-RI compared with those with CAA (29.6% vs. 3.7%, P=0.02; and 40.7% vs. 3.7%, P=0.002, respectively), whereas lobar hemorrhage was more frequent in patients with CAA (62.3% vs. 7.4%, P=0.0001). Overall, leptomeningeal involvement at presentation was present in 70.4% of patients with ABRA or CAA-RI and in only 7.4% of patients with CAA (P=0.0001). The sensitivity and specificity of leptomeningeal enhancement to identify patients with ABRA or CAA-RI were 70.4% and 92.6%, respectively, whereas the positive likelihood ratio (LR) was 9.5. The sensitivity and specificity of intracerebral hemorrhage to identify patients with CAA were 62.9% and 92.6%, respectively, whereas the positive LR was 8.5. Microbleeds were found in 70.4% of patients with inflammatory CAA at presentation. In conclusion, leptomeningeal enhancement and lobar hemorrhage at presentation may enable differentiation between CAA with and without inflammation. The identification at initial MRI of diffuse cortical-subcortical microbleeds in elderly patients presenting with infiltrative white matter process or prominent leptomeningeal enhancement is highly suggestive of vascular inflammatory CAA
Revisiting consistency conditions for quantum states of systems on closed timelike curves: an epistemic perspective
There has been considerable recent interest in the consequences of closed
timelike curves (CTCs) for the dynamics of quantum mechanical systems. A vast
majority of research into this area makes use of the dynamical equations
developed by Deutsch, which were developed from a consistency condition that
assumes that mixed quantum states uniquely describe the physical state of a
system. We criticise this choice of consistency condition from an epistemic
perspective, i.e., a perspective in which the quantum state represents a state
of knowledge about a system. We demonstrate that directly applying Deutsch's
condition when mixed states are treated as representing an observer's knowledge
of a system can conceal time travel paradoxes from the observer, rather than
resolving them. To shed further light on the appropriate dynamics for quantum
systems traversing CTCs, we make use of a toy epistemic theory with a strictly
classical ontology due to Spekkens and show that, in contrast to the results of
Deutsch, many of the traditional paradoxical effects of time travel are
present.Comment: 10 pages, 6 figures, comments welcome; v2 added references and
clarified some points; v3 published versio
On the exact gravitational lens equation in spherically symmetric and static spacetimes
Lensing in a spherically symmetric and static spacetime is considered, based
on the lightlike geodesic equation without approximations. After fixing two
radius values r_O and r_S, lensing for an observation event somewhere at r_O
and static light sources distributed at r_S is coded in a lens equation that is
explicitly given in terms of integrals over the metric coefficients. The lens
equation relates two angle variables and can be easily plotted if the metric
coefficients have been specified; this allows to visualize in a convenient way
all relevant lensing properties, giving image positions, apparent brightnesses,
image distortions, etc. Two examples are treated: Lensing by a
Barriola-Vilenkin monopole and lensing by an Ellis wormhole.Comment: REVTEX, 11 pages, 12 eps-figures, figures partly improved, minor
revision
Microlensing by natural wormholes: theory and simulations
We provide an in depth study of the theoretical peculiarities that arise in
effective negative mass lensing, both for the case of a point mass lens and
source, and for extended source situations. We describe novel observational
signatures arising in the case of a source lensed by a negative mass. We show
that a negative mass lens produces total or partial eclipse of the source in
the umbra region and also show that the usual Shapiro time delay is replaced
with an equivalent time gain. We describe these features both theoretically, as
well as through numerical simulations. We provide negative mass microlensing
simulations for various intensity profiles and discuss the differences between
them. The light curves for microlensing events are presented and contrasted
with those due to lensing produced by normal matter. Presence or absence of
these features in the observed microlensing events can shed light on the
existence of natural wormholes in the Universe.Comment: 16 pages, 24 postscript figures (3 coloured), revtex style, submitted
to Phys. Rev.
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
Computational Nuclear Physics and Post Hartree-Fock Methods
We present a computational approach to infinite nuclear matter employing
Hartree-Fock theory, many-body perturbation theory and coupled cluster theory.
These lectures are closely linked with those of chapters 9, 10 and 11 and serve
as input for the correlation functions employed in Monte Carlo calculations in
chapter 9, the in-medium similarity renormalization group theory of dense
fermionic systems of chapter 10 and the Green's function approach in chapter
11. We provide extensive code examples and benchmark calculations, allowing
thereby an eventual reader to start writing her/his own codes. We start with an
object-oriented serial code and end with discussions on strategies for porting
the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An
advanced course in computational nuclear physics: Bridging the scales from
quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck,
Editor
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
- âŠ