258 research outputs found
Recommended from our members
Piping elbow irrecoverable pressure loss coefficients for moderately high Reynolds numbers
Test data is described for three different piping elbows. These include 900 elbows with radii of curvature of 12 and 1.5, and a 45{degrees} elbow with a radius of curvature of 1.2. These radii of curvature are sufficiently sharp to cause significant irrecoverable pressure losses to occur. The variation in static wall pressure was measured upstream and downstream of each elbow plus spatially around the elbow itself. Irrecoverable loss coefficients over a range of flows were obtained and correlations for the data are provided. The testing extended the Reynolds number range of the currently existing data base in various handbooks (and other references available in the open literature) by over a factor of five. Comparisons of results to predictions from the correlations of prior studies are provided
Maxwell's field coupled nonminimally to quadratic torsion: Induced axion field and birefringence of the vacuum
We consider a possible (parity conserving) interaction between the
electromagnetic field and a torsion field of spacetime. For
generic elementary torsion, gauge invariant coupling terms of lowest order fall
into two classes that are both nonminimal and {\it quadratic} in torsion. These
two classes are displayed explicitly. The first class of the type
yields (undesirable) modifications of the Maxwell equations. The second class
of the type doesn't touch the Maxwell equations but rather
modifies the constitutive tensor of spacetime. Such a modification can be
completely described in the framework of metricfree electrodynamics. We
recognize three physical effects generated by the torsion: (i) An axion field
that induces an {\em optical activity} into spacetime, (ii) a modification of
the light cone structure that yields {\em birefringence} of the vacuum, and
(iii) a torsion dependence of the {\em velocity of light.} We study these
effects in the background of a Friedmann universe with torsion. {\it File
tor17.tex, 02 August 2003}Comment: 6 page
A quantum Monte Carlo study of the one-dimensional ionic Hubbard model
Quantum Monte Carlo methods are used to study a quantum phase transition in a
1D Hubbard model with a staggered ionic potential (D). Using recently
formulated methods, the electronic polarization and localization are determined
directly from the correlated ground state wavefunction and compared to results
of previous work using exact diagonalization and Hartree-Fock. We find that the
model undergoes a thermodynamic transition from a band insulator (BI) to a
broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since
it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with
no long-range order, we have searched for a second transition to this state by
(i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U.
We find no transition from the BO to MI state, and we propose that the MI state
in 1D is unstable to bond ordering under the addition of any finite ionic
potential. In real 1D systems the symmetric MI phase is never stable and the
transition is from a symmetric BI phase to a dimerized BO phase, with a
metallic point at the transition
Recommended from our members
A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces
Article
Authors
Metrics
Comments
Related Content
Abstract
Author summary
Introduction
Results and discussion
Conclusions
Methods
Supporting information
Acknowledgments
References
Reader Comments (0)
Media Coverage (0)
Figures
Abstract
Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast “yeast-like” growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …