25 research outputs found

    Discrete orthogonal projections on multiple knot periodic splines

    Get PDF
    AbstractThis paper establishes properties of discrete orthogonal projections on periodic spline spaces of order r, with knots that are equally spaced and of arbitrary multiplicity Mâ©œr. The discrete orthogonal projection is expressed in terms of a quadrature rule formed by mapping a fixed J-point rule to each sub-interval. The results include stability with respect to discrete and continuous norms, convergence, commutator and superapproximation properties. A key role is played by a novel basis for the spline space of multiplicity M, which reduces to a familiar basis when M=1

    An integral method for solving nonlinear eigenvalue problems

    Full text link
    We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least kk column vectors, where kk is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show that the original nonlinear eigenvalue problem reduces to a linear eigenvalue problem of dimension kk. No initial approximations of eigenvalues and eigenvectors are needed. The method is particularly suitable for moderately large eigenvalue problems where kk is much smaller than the matrix dimension. We also give an extension of the method to the case where kk is larger than the matrix dimension. The quadrature errors caused by the trapezoid sum are discussed for the case of analytic closed contours. Using well known techniques it is shown that the error decays exponentially with an exponent given by the product of the number of quadrature points and the minimal distance of the eigenvalues to the contour

    Superapproximation and commutator properties of discrete orthogonal projections for continuous splines

    Get PDF
    AbstractThis paper builds upon the Lp-stability results for discrete orthogonal projections on the spaces Sh of continuous splines of order r obtained by R. D. Grigorieff and I. H. Sloan in (1998, Bull. Austral. Math. Soc.58, 307–332). Properties of such projections were proved with a minimum of assumptions on the mesh and on the quadrature rule defining the discrete inner product. The present results, which include superapproximation and commutator properties, are similar to those derived by I. H. Sloan and W. Wendland (1999, J. Approx. Theory97, 254–281) for smoothest splines on uniform meshes. They are expected to have applications (as in I. H. Sloan and W. Wendland, Numer. Math. (1999, 83, 497–533)) to qualocation methods for non-constant-coefficient boundary integral equations, as well as to the wide range of other numerical methods in which quadrature is used to evaluate L2-inner products. As a first application, we consider the most basic variable-coefficient boundary integral equation, in which the constant-coefficient operator is the identity. The results are also extended to the case of periodic boundary conditions, in order to allow appplication to boundary integral equations on closed curves
    corecore