19 research outputs found

    Novae Ejecta as Colliding Shells

    Full text link
    Following on our initial absorption-line analysis of fifteen novae spectra we present additional evidence for the existence of two distinct components of novae ejecta having different origins. As argued in Paper I one component is the rapidly expanding gas ejected from the outer layers of the white dwarf by the outburst. The second component is pre-existing outer, more slowly expanding circumbinary gas that represents ejecta from the secondary star or accretion disk. We present measurements of the emission-line widths that show them to be significantly narrower than the broad P Cygni profiles that immediately precede them. The emission profiles of novae in the nebular phase are distinctly rectangular, i.e., strongly suggestive of emission from a relatively thin, roughly spherical shell. We thus interpret novae spectral evolution in terms of the collision between the two components of ejecta, which converts the early absorption spectrum to an emission-line spectrum within weeks of the outburst. The narrow emission widths require the outer circumbinary gas to be much more massive than the white dwarf ejecta, thereby slowing the latter's expansion upon collision. The presence of a large reservoir of circumbinary gas at the time of outburst is suggestive that novae outbursts may sometime be triggered by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in Astrophysics & Space Scienc

    Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne

    Full text link
    The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + alpha threshold. We have measured the alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction at 43 MeV/u. Combining our measurements with previous determinations of the radiative widths of these states, we conclude that no significant breakout from the hot CNO cycle into the rp process in novae is possible via 15O(alpha,gamma)19Ne, assuming current models accurately represent their temperature and density conditions

    Infrared Space Observatory and Ground-Based Infrared Observation of the Classical Nova V723 Cassiopeiae

    Get PDF
    We present observations of the classical nova V723 Cassiopeiae (Nova Cas 1995), obtained both with the Infrared Space Observatory (ISO) and from the ground. The infrared spectrum was dominated in the first year by H and He recombination lines, and at later times by coronal lines. The H recombination lines imply a reddening of E(B-V) = 0.78, an electron temperature of 7000 K, and an electron density of 2 × 108 cm-3 on day 250. We argue that the high-ionization species in the infrared are most likely the result of collisional ionization rather than photoionization and are therefore truly "coronal"; we estimate a temperature of 3.2 × 105 K in the coronal region and abundance ratios of S/Si 2.1, Ca/Si 1.6, and Al/Si 1.5. The ejected mass as determined from the Brα line was 2.6 × 10-5 M⊙ for a distance of 4 kpc; however, the mass deduced from the free-free emission, which we conclude arises primarily in the coronal zone, is 4.3 × 10-4 M⊙. V723 Cas did not display the [O IV] 25.89 ÎŒm fine-structure line, which was typically seen in the spectra of novae observed with ISO. There was no evidence of dust emission in V723 Cas

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Atypical dust species in the ejecta of classical novae

    No full text
    A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 ÎŒmthat are similar to “Unidentified Infrared” (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 ÎŒmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed

    Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey

    No full text
    The SPitzer InfraRed Intensive Transients Survey (SPIRITS) searched for luminous infrared (IR) transients and variables in nearly 200 nearby galaxies from 2014 to 2019, using the warm Spitzer telescope at 3.6 and 4.5 ÎŒm. Among the SPIRITS variables are IR-bright objects that are undetected in ground-based optical surveys. We classify them as (1) transients, (2) periodic variables, and (3) irregular variables. The transients include eSPecially Red Intermediate-luminosity Transient Events (SPRITEs), having maximum luminosities fainter than supernovae, red IR colors, and a wide range of outburst durations (days to years). Here we report deep optical and near-IR imaging with the Hubble Space Telescope (HST) of 21 SPIRITS variables. They were initially considered SPRITE transients, but many eventually proved instead to be periodic or irregular variables as more data were collected. HST images show most of these cool and dusty variables are associated with star-forming regions in late-type galaxies, implying an origin in massive stars. Two SPRITEs lacked optical progenitors in deep preoutburst HST images; however, one was detected during eruption at J and H, indicating a dusty object with an effective temperature of ∌1050 K. One faint SPRITE turned out to be a dusty classical nova. About half the HST targets proved to be periodic variables, with pulsation periods of 670-2160 days; they are likely dusty asymptotic-giant-branch (AGB) stars with masses of ∌5-10 M ⊙. A few of them were warm enough to be detected in deep HST frames, but most are too cool. Out of six irregular variables, two were red supergiants with optical counterparts in HST images; four were too enshrouded for HST detection. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore