8 research outputs found

    A MEMS viscometer for unadulterated human blood

    Get PDF
    The design and theoretical modelling of an oscillating micro-mechanical-viscometer designed for the measurement of whole unadulterated human blood, is described. The proposed device utilises the dependence of the squeeze-film damping ratio on properties of the surrounding fluid to measure fluid viscosity using an oscillating plate structure. The optimum geometrical configuration for the device structure has been investigated and a methodology for defining the optimum configuration of the micro-mechanical sensor identified. This is then applied to calculate the predicted noise equivalent viscosity change . It was found that the device performance is limited by electronic noise within the detection circuitry rather than thermal mechanical noise. An electronic noise limited measurement resolution of , is predicted for measurement over a shear range of , at a measurement bandwidth of . The linearity of response of the micro-mechanical-viscometer is considered and the device is predicted to provide a linear measurement response

    Bandpass filters for unconstrained target recognition and their implementation in coherent optical correlators

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DX199683 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Performance of Tuneable Photo-refractive Filters

    No full text
    No abstract available

    Parallel Pixel Processing using Programmable Gate Arrays

    No full text
    No description supplie

    Gray matter textural heterogeneity as a potential in-vivo biomarker of fine structural abnormalities in Asperger syndrome

    No full text
    Brain imaging studies contribute to the neurobiological understanding of Autism Spectrum Conditions (ASC). Herein, we tested the prediction that distributed neurodevelopmental abnormalities in brain development impact on the homogeneity of brain tissue measured using texture analysis (TA; a morphological method for surface pattern characterization). TA was applied to structural magnetic resonance brain scans of 54 adult participants (24 with Asperger syndrome (AS) and 30 controls). Measures of mean gray-level intensity, entropy and uniformity were extracted from gray matter images at fine, medium and coarse textures. Comparisons between AS and controls identified higher entropy and lower uniformity across textures in the AS group. Data reduction of texture parameters revealed three orthogonal principal components. These were used as regressors-of-interest in a voxel-based morphometry analysis that explored the relationship between surface texture variations and regional gray matter volume. Across the AS but not control group, measures of entropy and uniformity were related to the volume of the caudate nuclei, whereas mean gray-level was related to the size of the cerebellar vermis. Similar to neuropathological studies, our study provides evidence for distributed abnormalities in the structural integrity of gray matter in adults with ASC, in particular within corticostriatal and corticocerebellar networks. Additionally, this in-vivo technique may be more sensitive to fine microstructural organization than other more traditional magnetic resonance approaches and serves as a future testable biomarker in AS and other neurodevelopmental disorders

    Abnormalities in fronto-striatal connectivity within language networks relate to differences in grey-matter heterogeneity in Asperger syndrome

    No full text
    Asperger syndrome (AS) is an Autism Spectrum Disorder (ASD) characterised by qualitative impairment in the development of emotional and social skills with relative preservation of general intellectual abilities, including verbal language. People with AS may nevertheless show atypical language, including rate and frequency of speech production. We previously observed that abnormalities in grey matter homogeneity (measured with texture analysis of structural MR images) in AS individuals when compared with controls are also correlated with the volume of caudate nucleus. Here, we tested a prediction that these distributed abnormalities in grey matter compromise the functional integrity of brain networks supporting verbal communication skills. We therefore measured the functional connectivity between caudate nucleus and cortex during a functional neuroimaging study of language generation (verbal fluency), applying psycho-physiological interaction (PPI) methods to test specifically for differences attributable to grey matter heterogeneity in AS participants. Furthermore, we used dynamic causal modelling (DCM) to characterise the causal directionality of these differences in interregional connectivity during word production. Our results revealed a diagnosis-dependent influence of grey matter heterogeneity on the functional connectivity of the caudate nuclei with right insula/inferior frontal gyrus and anterior cingulate, respectively with the left superior frontal gyrus and right precuneus. Moreover, causal modelling of interactions between inferior frontal gyri, caudate and precuneus, revealed a reliance on bottom-up (stimulus-driven) connections in AS participants that contrasted with a dominance of top-down (cognitive control) connections from prefrontal cortex observed in control participants. These results provide detailed support for previously hypothesised central disconnectivity in ASD and specify discrete brain network targets for diagnosis and therapy in ASD

    Paraganglioma and Pheochromocytoma

    No full text
    corecore