26 research outputs found

    The Energetic Cost of Activation of White Muscle Fibres from the Dogfish Scyliophinus Canicula

    Get PDF
    Link to the publisher's site: http://jeb.biologists.org/The energetic cost of activation was measured during an isometric tetanus of white muscle fibres from the dogfish Scyliorhinus canicula. The total heat production by the fibres was taken as a measure of the total energetic cost. This energy consists of two parts. One is due to crossbridge interaction which produces isometric force, and this part varies linearly with the degree of filament overlap in the fibres. The other part of the energy is that associated with activation of the crossbridges by Ca2+, mainly with uptake of Ca2+ into the sarcoplasmic reticulum by the ATP-driven Ca2+ pump. Total heat production was measured at various degrees of filament overlap beyond the optimum for force development. Extrapolation of heat versus force production data to evaluate the heat remaining at zero force gave a value of 34±5 % (mean ± S.E.M., N=24) for activation heat as a percentage of total heat production in a 2.0 s isometric tetanus. Values for 0.4 and 1.0 s of stimulation were similar. Comparison with values in the literature shows that the energetic cost of activation in dogfish muscle is very similar to that of frog skeletal muscle and it cannot explain the lower maximum efficiency of dogfish muscle compared with frog muscle. The proportion of energy for activation (Ca2+ turnover) is similar to that expected from a simple model in which Ca2+ turnover was varied to minimize the total energy cost for a contraction plus relaxation cycle.Peer reviewe

    Distinguishing Metabolic Heat from Condensation Heat during Muscle Recovery

    Get PDF
    Publisher's link: http://jeb.biologists.org/When a thermopile is used to measure the heat production of isolated muscle, the muscle is surrounded by gas saturated with water vapour, initially in equilibrium with the muscle. After contraction, the osmolarity of the muscle is raised so that it is no longer in equilibrium with the gas around it, and condensation will occur. When artificial muscles of known osmolarity were placed on a thermopile surrounded by gas in equilibrium with a solution of lower osmolarity, their temperature was found to be raised (by 102.7mKosmol-1 l). This temperature increase was greatly reduced by covering the artificial muscle with a Teflon film. Experiments on living muscle from the dogfish Scyliorhinus canicula showed that muscle temperature was higher 2 min after a series of 20 twitches at 3 Hz if the muscle was not covered by Teflon than if it was covered. The Teflon covering did not diminish the muscle’s contractile performance. We conclude that the condensation of water does contribute to the heat measured during the recovery period, but that when the muscle is covered by Teflon film condensation heat can largely be prevented so that only genuine metabolic recovery heat is produced.Peer reviewe

    Autonomic energy conversion

    No full text

    Contraction with shortening during stimulation or during relaxation : how do the energetic costs compare?

    No full text
    White muscle fibres from dogfish were used to compare the energetic costs of shortening by fully active muscle and by relaxing muscle. The muscle preparation was tetanized for 0.6 s and shortened either during stimulation or during relaxation. The distance shortened was 1 mm (about 15% L0, the muscle length optimum for force) and the velocity was 3.5 or 7.0 mm s-1 (about 15 or 30% V0, the maximum velocity of shortening). Isometric tetani at L0 were also investigated. Mechanical work and heat production were measured, and work + heat was taken as a measure of energetic cost. Both work and the energetic cost were higher with shortening during stimulation than with shortening during relaxation. The results suggest that shortening during relaxation, which is known to occur during locomotion in vivo, may be an energy-saving strategy.Peer reviewe

    Isometric and isovelocity contractile performance of red muscle fibres from the dogfish Scyliorhinus canicula

    No full text
    Maximum isometric tetanic force produced by bundles of red muscle fibres from dogfish, Scyliorhinus canicula (L.), was 142.4+/-10.3 kN m(-2) (N=35 fibre bundles); this was significantly less than that produced by white fibres 289.2+/-8.4 kN m(-2) (N=25 fibre bundles) (means +/- S.E.M.). Part, but not all, of the difference is due to mitochondrial content. The maximum unloaded shortening velocity, 1.693+/-0.108 L(0) s(-1) (N=6 fibre bundles), was measured by the slack-test method. L(0) is the length giving maximum isometric force. The force/velocity relationship was investigated using a step-and-ramp protocol in seven red fibre bundles. The following equation was fitted to the data: [(P/P(0))+(a/P(0))](V+b)=[(P(0)(*)/P(0))+(a/P(0))]b, where P is force during shortening at velocity V, P(0) is the isometric force before shortening, and a, b and P(0)(*) are fitted constants. The fitted values were P(0)(*)/P(0)=1.228+/-0.053, V(max)=1.814+/-0.071 L(0) s(-1), a/P(0)=0.269+/-0.024 and b=0.404+/-0.041 L(0) s(-1) (N=7 for all values). The maximum power was 0.107+/-0.005P(0)V(max) and was produced during shortening at 0.297+/-0.012V(max). Compared with white fibres from dogfish, the red fibres have a lower P(0) (49%) and V(max) (48%), but the shapes of the force/velocity curves are similar. Thus, the white and red fibres have equal capacities to produce power within the limits set by the isometric force and maximum velocity of shortening of each fibre type. A step shortening of 0.050+/-0.003L(0) (N=7) reduced the maximum isometric force in the red fibres' series elasticity to zero. The series elasticity includes all elastic structures acting in series with the attached cross-bridges. Three red fibre bundles were stretched at a constant velocity, and force (measured when length reached L(0)) was 1.519+/-0.032P(0). In the range of velocities used here, -0.28 to -0.63V(max), force varied little with the velocity.Peer reviewe

    Shortening during stimulation vs. during relaxation : How do the costs compare?

    No full text
    White muscle fibres from dogfish were used to investigate the energetic cost of shortening by fully active muscle and by relaxing muscle. The muscle preparation was tetanized for 0.6 s and shortened by 1 mm (about 15% L0) at 7 mm/s (about 30% V0) either during stimulation or during relaxation. Isometric tetani at L0 were also investigated. Mechanical work was calculated from force and length change. Work + heat was taken as a measure of energetic cost. Both work and energetic cost were higher for shortening during stimulation than during relaxation. We also evaluated separately the work and heat associated with the contractile component and with the series elastic component. Work stored in the series elasticity could be completely recovered as external work when the shortening occurred during relaxation.Peer reviewe

    Elastic energy storage and release in white muscle from dogfish scyliorhinus canicula

    No full text
    The production of work by the contractile component (CC) and the storage and release of work in the elastic structures that act in series (the series elastic component, SEC) with the contractile component were measured using white muscle fibres from the dogfish Scyliorhinus canicula. Heat production was also measured because the sum of work and heat is equivalent to the energy cost of the contraction (ATP used). These energy fluxes were evaluated in contractions with constant-velocity shortening either during stimulation or during relaxation. The muscle preparation was tetanized for 0.6 s and shortened by 1 mm (approximately 15 % of L0) at 3.5 or 7.0 mm s-1 (approximately 15 or 30 % of V0), where L0 is the muscle length at which isometric force is greatest and V0 is the maximum velocity of shortening. In separate experiments, the stiffness of the SEC was characterized from measurements of force responses to step changes in the length of contracting muscle. Using the values of SEC stiffness, we evaluated separately the work and heat associated with the CC and with the SEC. The major findings were (1) that work stored in the SEC could be completely recovered as external work when shortening occurred during relaxation (none of the stored work being degraded into heat) and (2) that, when shortening occurred progressively later during the contraction, the total energy cost of the contraction declined towards that of an isometric contraction.Peer reviewe

    Temperature change as a probe of muscle crossbridge kinetics: a review and discussion

    No full text
    Following the ideas introduced by Huxley (Huxley 1957, Prog. Biophys. Biophys. Chem. 7, 255–318), it is generally supposed that muscle contraction is produced by temporary links, called crossbridges, between myosin and actin filaments, which form and break in a cyclic process driven by ATP splitting. Here we consider the interaction of the energy in the crossbridge, in its various states, and the force exerted. We discuss experiments in which the mechanical state of the crossbridge is changed by imposed movement and the energetic consequence observed as heat output and the converse experiments in which the energy content is changed by altering temperature and the mechanical consequences are observed. The thermodynamic relationship between the experiments is explained and, at the first sight, the relationship between the results of these two types of experiment appears paradoxical. However, we describe here how both of them can be explained by a model in which mechanical and energetic changes in the crossbridges occur in separate steps in a branching cycle

    Heat production and oxygen consumption during metabolic recovery of white muscle fibres from the dogfish Scyliorhinus canicula

    No full text
    Oxygen consumption and heat production were measured during contraction and recovery of isolated, white muscle fibres from dogfish (Scyliorhinus canicula) at 19 degrees C. The contraction period consisted of 20 isometric twitches at 3 Hz; this was followed by a recovery period of 2 h without stimulation. We tested the hypothesis that recovery is wholly oxidative (not glycolytic) in these fibres. The following features support this hypothesis. (i) The ratio of total heat produced to oxygen consumed, 451+/-34 kJ mol(-)(1) (mean +/- s.e.m., N=29), was close to that expected for either the oxidation of carbohydrate, 473 kJ mol(-)(1), or the oxidation of fat, 439 kJ mol(-)(1). Even assuming the maximum value (95 % confidence limit) of the observed heat production, glycolysis could account for resynthesis of at most 18 % of the ATP used during the contractions. (ii) When the difference in rates of diffusion of oxygen and heat within the muscle are taken into account, the time courses of oxygen consumption and heat production match each other well during the entire recovery period. The efficiency of recovery (=energy used for ATP synthesis/energy available for ATP synthesis) was estimated from the results. This value, 84.0+/-20.1 % (mean +/- s.e.m., N=29), is relatively high and represents the first such measurement in functioning muscle.Peer reviewe
    corecore