16 research outputs found
Intravascular extended sensitivity (IVES) MRI antennas
The design and application of an intravascular extended sensitivity (IVES) MRI antenna is described. The device is a loopless antenna design that incorporates both an insulating, dielectric coating and a winding of the antenna whip into a helical shape. Because this antenna produces a broad region of high SNR and also allows for imaging near the tip of the device, it is useful for imaging long, luminal structures. To elucidate the design and function of this device, the effects of both insulation and antenna winding were characterized by theoretical and experimental studies. Insulation broadens the longitudinal region over which images can be collected (i.e., along the lumen of a vessel) by increasing the resonant pole length. Antenna winding, conversely, allows for imaging closer to the tip of the antenna by decreasing the resonant pole length. Over a longitudinal region of 20 cm, the IVES imaging antenna described here produces a system SNR of approximately 40,000/r (mL-1Hz1/2), where r is the radial distance from the antenna axis in centimeters. As opposed to microcoil antenna designs, these antennas do not require exact positioning and allow for imaging over broad tissue regions. While focusing on the design of the IVES antenna, this work also serves to enhance our overall understanding of the properties and behavior of the loopless antenna design. © 2003 Wiley-Liss, Inc
A preliminary analysis and model of prostate injection distributions
PURPOSE. Understanding the internal dynamics of prostate injections, particularly injection pattern distribution is a key step to developing new therapies for prostate disease that may be best served with a direct injection approach. Due to excellent properties involving liquid contrast agents, MRI can be used for targeting and monitoring of injections into organs and tissues. MATERIALS AND METHODS. Eleven intraprostatic injections were performed in vivo with canines using a custom transrectal guiding and imaging system for use in a standard 1.5 T MR scanner. In addition, 25 injections were performed on excised cadaveric human prostates, using a MedRad Spectris™ injector system. MRI was used to guide the injections and monitor intraparenchymal injection distribution. RESULTS. T1 and T2-weighted MR images were correlated with histology to produce three-dimensional data sets that can be used to analyze trends in injection patterns. This analysis was used to develop strategies for injection prediction such as gadolinium preinjections and diffusion-weighted imaging guidance. In addition, a rough model of prostate injections is described, and a preliminary injection guide is developed that takes into account the individual clinician's goals for therapy. CONCLUSIONS. MR visualization of injected therapeutic agents allows for prediction and monitoring of drug distributions, possibly improving efficacy and reducing side effects. Injection analysis and modeling may be used to assist in optimizing clinical treatments that require or would benefit from focal parenchymal injections into the prostate. © 2005 Wiley-Liss, Inc
Design of a novel MRI compatible manipulator for image guided prostate interventions
This paper reports a novel remotely actuated manipulator for access to prostate tissue under magnetic resonance imaging guidance (APT-MRI) device, designed for use in a standard high-field MRI scanner. The device provides three-dimensional MRI guided needle placement with millimeter accuracy under physician control. Procedures enabled by this device include MRI guided needle biopsy, fiducial marker placements, and therapy delivery. Its compact size allows for use in both standard cylindrical and open configuration MRI scanners. Preliminary in vivo canine experiments and first clinical trials are reported
System for MR image-guided prostate interventions: Canine study
The purpose of this study was to demonstrate the use of a transrectal system that enables precise magnetic resonance (MR) image guidance and monitoring of prostate interventions. The system used a closed-bore 1.5-T MR imaging unit and enables one to take advantage of the higher signal-to-noise ratio achieved with traditional magnet designs, which is crucial for accurate targeting and monitoring of prostate interventions. In the first of the four canine studies, reliable needle placement, with all needles placed within 2 mm of the desired target site, was achieved. In two other studies, MR imaging was used to monitor distribution of injected contrast agent solution (gadopentetate dimeglumine mixed with trypan blue dye) in and around the prostate, thereby confirming that solution had been delivered to the desired tissue and also detecting faulty injections. In the final study, accurate placement and MR imaging of brachytherapy seeds in the prostate were demonstrated. The described system provides a flexible platform for a variety of minimally invasive MR image-guided therapeutic and diagnostic prostate interventions. © RSNA, 2003
System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner
A technique for transperineal high-dose-rate (HDR) prostate brachytherapy and needle biopsy in a standard 1.5 T MRI scanner is demonstrated. In each of eight procedures (in four patients with intermediate to high risk localized prostate cancer), four MRI-guided transperineal prostate biopsies were obtained followed by placement of 14-15 hollow transperineal catheters for HDR brachytherapy. Mean needle-placement accuracy was 2.1 mm, 95% of needle-placement errors were less than 4.0 mm, and the maximum needle-placement error was 4.4 mm. In addition to guiding the placement of biopsy needles and brachytherapy catheters, MR images were also used for brachytherapy treatment planning and optimization. Because 1.5 T MR images are directly acquired during the interventional procedure, dependence on deformable registration is reduced and online image quality is maximized
Transrectal prostate biopsy and fiducial marker placement in a standard 1.5T magnetic resonance imaging scanner
Purpose: We investigated the accuracy and feasibility of a system that provides transrectal needle access to the prostate concurrent with 1.5 Tesla MRI which previously has not been possible. Materials and Methods: In 5 patients with previously diagnosed prostate cancer, MRI guided intraprostatic placement of gold fiducial markers (4 procedures) and/or prostate biopsy (3 procedures) was performed using local anesthesia. Results: Mean procedure duration was 76 minutes and all patients tolerated the intervention well. Procedure related adverse events included self-limited hematuria and hematochezia following 3 of 8 procedures (all resolved in less than 1 week). Mean needle placement accuracy was 1.9 mm for the fiducial marker placement studies and 1.8 mm for the biopsy procedures. Mean fiducial marker placement accuracy was 4.8 mm and the mean fiducial marker placement accuracy transverse to the needle direction was 2.6 mm. All patients who underwent the procedure were able to complete their course of radiotherapy without delay or complication. Conclusions: While studies of clinical usefulness are warranted, transrectal 1.5 T MRI guided prostate biopsy and fiducial marker placement is feasible using this system, providing new opportunities for image guided diagnostic and therapeutic prostate interventions. Copyright © 2006 by American Urological Association