307 research outputs found
Affection, virtue, pleasure, and profit: Developing an understanding of friendship closeness and intimacy in western and Asian societies
The development of friendship understanding has rarely been explored from a cross-cultural perspective. In this study, children and adolescents from Iceland, China, Russia, and the former East Germany were investigated in one longitudinal and three cross-sectional samples. Children from three different Chinese ecologies were interviewed to account for within-culture variation. Participants were interviewed about friendship closeness and intimacy at ages 7, 9, 12, and 15 years. Their statements were scored according to (a) structural-developmental stages and (b) content aspects of friendship reasoning. Results reveal that the development of friendship reasoning of participants from all societies could be captured by the cognitive-structural stages and content categories developed in western cultures. At the same time, distinct cultural differences emerged, especially between the Russian and Chinese participants, on the one hand, and the Icelandic and East German participants, on the other hand. The within-China analyses reveal little differences for the content aspects of friendship understanding between the three ecologies, but differences in the cognitive-structural aspects of friendship reasoning were found. © 2008 The International Society for the Study of Behavioural Development
The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean
This paper is not subject to U.S. copyright. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 297 (2010): 299-310, doi:10.1016/j.palaeo.2010.08.009.A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16–17 °C between 600 and 950 CE (Common Era), centuries before the classic European Medieval Warm Period (950–1100 CE) and peak warming in the Nordic Seas (1000–1400 CE). A series of centennial warm/cool cycles began about 1000 CE with temperature minima of ~ 8 to 9 °C about 1150, 1350, and 1650–1800 CE, and intervening warm periods (14–15 °C) centered at 1200, 1400, 1500 and 1600 CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200 CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800 CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean–atmosphere processes
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Integrating multiple lines of evidence to assess the effects of maternal BMI on pregnancy and perinatal outcomes
Background: Higher maternal pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and perinatal outcomes. However, whether these associations are causal remains unclear. Methods: We explored the relation of maternal pre-/early-pregnancy BMI with 20 pregnancy and perinatal outcomes by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, and paternal negative control analyses), including data from over 400,000 women. Results: All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal anaemia, delivering a small-for-gestational-age baby and initiating breastfeeding, but higher odds of hypertensive disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre-labour membrane rupture, induction of labour, caesarean section, large-for-gestational age, high birthweight, low Apgar score at 1 min, and neonatal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates from Mendelian randomisation. Conclusions: Our findings support a causal role for maternal pre-/early-pregnancy BMI on 14 out of 20 adverse pregnancy and perinatal outcomes. Pre-conception interventions to support women maintaining a healthy BMI may reduce the burden of obstetric and neonatal complications. Funding: Medical Research Council, British Heart Foundation, European Research Council, National Institutes of Health, National Institute for Health Research, Research Council of Norway, Wellcome Trust.</p
Philopatry and regional connectivity of the great hammerhead shark, Sphyrna mokarran in the U.S. and Bahamas
A thorough understanding of movement patterns of a species is critical for designing effective conservation and management initiatives. However, generating such information for large marine vertebrates is challenging, as they typically move over long distances, live in concealing environments, are logistically difficult to capture and, as upper-trophic predators, are naturally low in abundance. Large-bodied, broadly distributed tropical shark typically restricted to coastal and shelf habitats, the great hammerhead shark Sphyrna mokarran epitomizes such challenges. Highly valued for its fins (in target and incidental fisheries), it suffers high bycatch mortality coupled with fecundity conservative life history, and as a result, is vulnerable to over-exploitation and population depletion. Although there are very little species-specific data available, the absence of recent catch records give cause to suspect substantial declines across its range. Here, we used biotelemetry techniques (acoustic and satellite), conventional tagging, laser-photogrammetry, and photo-identification to investigate the level of site fidelity/residency for great hammerheads to coastal areas in the Bahamas and U.S., and the extent of movements and connectivity of great hammerheads between the U.S. and Bahamas. Results revealed large-scale return migrations (3030 km), seasonal residency to local areas (some for 5 months), site fidelity (annual return to Bimini and Jupiter for many individuals) and numerous international movements. These findings enhance the understanding of movement ecology in great hammerhead sharks and have potential to contribute to improved cons
Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT
We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster
Planck intermediate results: III. the relation between galaxy cluster mass and Sunyaev-Zeldovich signal
We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL-D A2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. © ESO, 2013
Planck early results. II. The thermal performance of Planck
The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved
through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency
coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium
cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three
V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20 K), a 4He Joule-Thomson cooler (4.7 K),
and a 3He-4He dilution cooler (1.4 K and 0.1 K). The flight system was at ambient temperature at launch and cooled in space to operating
conditions. The HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the
rest of Planck, and operates at a mean temperature of 384 K. At the other end of the spacecraft, the telescope baffle operates at 42.3 K and the
telescope primary mirror operates at 35.9 K. The temperatures of key parts of the instruments are stabilized by both active and passive methods.
Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and
fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data
- …