6 research outputs found
Semiclassical interferences and catastrophes in the ionization of Rydberg atoms by half-cycle pulses
A multi-dimensional semiclassical description of excitation of a Rydberg
electron by half-cycle pulses is developed and applied to the study of energy-
and angle-resolved ionization spectra. Characteristic novel phenomena
observable in these spectra such as interference oscillations and semiclassical
glory and rainbow scattering are discussed and related to the underlying
classical dynamics of the Rydberg electron. Modifications to the predictions of
the impulse approximation are examined that arise due to finite pulse
durations
Ac Stark Effects and Harmonic Generation in Periodic Potentials
The ac Stark effect can shift initially nonresonant minibands in
semiconductor superlattices into multiphoton resonances. This effect can result
in strongly enhanced generation of a particular desired harmonic of the driving
laser frequency, at isolated values of the amplitude.Comment: RevTeX, 10 pages (4 figures available on request), Preprint
UCSBTH-93-2
Electric Field Control of Shallow Donor Impurities in Silicon
We present a tight-binding study of donor impurities in Si, demonstrating the
adequacy of this approach for this problem by comparison with effective mass
theory and experimental results. We consider the response of the system to an
applied electric field: donors near a barrier material and in the presence of
an uniform electric field may undergo two different ionization regimes
according to the distance of the impurity to the Si/barrier interface. We show
that for impurities ~ 5 nm below the barrier, adiabatic ionization is possible
within switching times of the order of one picosecond, while for impurities ~
10 nm or more below the barrier, no adiabatic ionization may be carried out by
an external uniform electric field. Our results are discussed in connection
with proposed Si:P quantum computer architectures.Comment: 18 pages, 6 figures, submitted to PR