520 research outputs found
Reissner-Nordstrom-de Sitter black hole, planar coordinates and dS/CFT
We discuss the Reissner-Nordstrom-de Sitter black holes in the context of
dS/CFT correspondence by using static and planar coordinates. The boundary
stress tensor and the mass of the solutions are computed. Also, we investigate
how the RG flow is changed for different foliations. The Kastor-Traschen
multi-black hole solution is considered as well as AdS counterparts of these
configurations. In particular, we find that in planar coordinates the black
holes appear like punctures in the dual boundary theory.Comment: 30 pages, 3 eps figures, JHEP style v2: new references added,
misprints correcte
Shape and blocking effects on odd-even mass differences and rotational motion of nuclei
Nuclear shapes and odd-nucleon blockings strongly influence the odd-even
differences of nuclear masses. When such effects are taken into account, the
determination of the pairing strength is modified resulting in larger pair
gaps. The modified pairing strength leads to an improved self-consistent
description of moments of inertia and backbending frequencies, with no
additional parameters.Comment: 7 pages, 3 figures, subm to PR
Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions
We find all the higher dimensional solutions of the Einstein-Maxwell theory
that are the topological product of two manifolds of constant curvature. These
solutions include the higher dimensional Nariai, Bertotti-Robinson and
anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with
toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit
results for any dimension D>3. These solutions are generated from the
appropriate extremal limits of the higher dimensional near-extreme black holes
in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and
the charge parameters of the higher dimensional extreme black holes as a
function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio
Thermodynamic and gravitational instability on hyperbolic spaces
We study the properties of anti--de Sitter black holes with a Gauss-Bonnet
term for various horizon topologies (k=0, \pm 1) and for various dimensions,
with emphasis on the less well understood k=-1 solution. We find that the zero
temperature (and zero energy density) extremal states are the local minima of
the energy for AdS black holes with hyperbolic event horizons. The hyperbolic
AdS black hole may be stable thermodynamically if the background is defined by
an extremal solution and the extremal entropy is non-negative. We also
investigate the gravitational stability of AdS spacetimes of dimensions D>4
against linear perturbations and find that the extremal states are still the
local minima of the energy. For a spherically symmetric AdS black hole
solution, the gravitational potential is positive and bounded, with or without
the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet
coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS
space), is found useful to keep the potential bounded from below, as required
for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps
figure
Surface Terms as Counterterms in the AdS/CFT Correspondence
We examine the recently proposed technique of adding boundary counterterms to
the gravitational action for spacetimes which are locally asymptotic to anti-de
Sitter. In particular, we explicitly identify higher order counterterms, which
allow us to consider spacetimes of dimensions d<=7. As the counterterms
eliminate the need of ``background subtraction'' in calculating the action, we
apply this technique to study examples where the appropriate background was
ambiguous or unknown: topological black holes, Taub-NUT-AdS and Taub-Bolt-AdS.
We also identify certain cases where the covariant counterterms fail to render
the action finite, and we comment on the dual field theory interpretation of
this result. In some examples, the case of vanishing cosmological constant may
be recovered in a limit, which allows us to check results and resolve
ambiguities in certain asymptotically flat spacetime computations in the
literature.Comment: Revtex, 18 pages. References updated and few typo's fixed. Final
versio
Ricci flat rotating black branes with a conformally invariant Maxwell source
We consider Einstein gravity coupled to an gauge field for which the
density is given by a power of the Maxwell Lagrangian. In -dimensions the
action of Maxwell field is shown to enjoy the conformal invariance if the power
is chosen as . We present a class of charge rotating solutions in
Einstein-conformally invariant Maxwell gravity in the presence of a
cosmological constant. These solutions may be interpreted as black brane
solutions with inner and outer event horizons or an extreme black brane
depending on the value of the mass parameter. Since we are considering power of
the Maxwell density, the black brane solutions exist only for dimensions which
are multiples of four. We compute conserved and thermodynamics quantities of
the black brane solutions and show that the expression of the electric field
does not depend on the dimension. Also, we obtain a Smarr-type formula and show
that these conserved and thermodynamic quantities of black branes satisfy the
first law of thermodynamics. Finally, we study the phase behavior of the
rotating black branes and show that there is no Hawking--Page phase transition
in spite of conformally invariant Maxwell field.Comment: 13 pages, one figur
Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid
Topological charged black holes coupled with a cosmological constant in
spacetimes are studied, where is an Einstein
space of the form . The global structure for
the four-dimensional spacetimes with is investigated systematically.
The most general solutions that represent a Type fluid in such a high
dimensional spacetime are found, and showed that topological charged black
holes can be formed from the gravitational collapse of such a fluid. When the
spacetime is (asymptotically) self-similar, the collapse always forms black
holes for , in contrast to the case , where it can form
either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.
Charged AdS Black Holes and Catastrophic Holography
We compute the properties of a class of charged black holes in anti-de Sitter
space-time, in diverse dimensions. These black holes are solutions of
consistent Einstein-Maxwell truncations of gauged supergravities, which are
shown to arise from the inclusion of rotation in the transverse space. We
uncover rich thermodynamic phase structures for these systems, which display
classic critical phenomena, including structures isomorphic to the van der
Waals-Maxwell liquid-gas system. In that case, the phases are controlled by the
universal `cusp' and `swallowtail' shapes familiar from catastrophe theory. All
of the thermodynamics is consistent with field theory interpretations via
holography, where the dual field theories can sometimes be found on the world
volumes of coincident rotating branes.Comment: 19 pages, revtex, psfig, 6 multicomponent figures, typos, references
and a few remarks have been repaired, and adde
Hawking Temperature in Taub-NUT (A)dS spaces via the Generalized Uncertainty Principle
Using the extended forms of the Heisenberg uncertainty principle from string
theory and the quantum gravity theory, we drived Hawking temperature of a
Taub-Nut-(A)dS black hole. In spite of their distinctive natures such as
asymptotically locally flat and breakdown of the area theorem of the horizon
for the black holes, we show that the corrections to Hawking temperature by the
generalized versions of the the Heisenberg uncertainty principle increases like
the Schwarzschild-(A)dS black hole and give the reason why the Taub-Nut-(A)dS
metric may have AdS/CFT dual picture.Comment: version published in General Relativity and Gravitatio
Black Hole Entropy without Brick Walls
We present evidence which confirms a suggestion by Susskind and Uglum
regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't
Hooft's approach to evaluating black hole entropy through a
statistical-mechanical counting of states for a scalar field propagating
outside the event horizon yields precisely the one-loop renormalization of the
standard Bekenstein-Hawking formula, S=\A/(4G). Our calculation also yields a
constant contribution to the black hole entropy, a contribution associated with
the one-loop renormalization of higher curvature terms in the gravitational
action.Comment: 15 pages, plain LaTex minor additions including some references;
version accepted for publicatio
- …