12 research outputs found

    Machine learning applications in head and neck radiation oncology: Lessons from open-source radiomics challenges

    No full text
    Radiomics leverages existing image datasets to provide non-visible data extraction via image post-processing, with the aim of identifying prognostic, and predictive imaging features at a sub-region of interest level. However, the application of radiomics is hampered by several challenges such as lack of image acquisition/analysis method standardization, impeding generalizability. As of yet, radiomics remains intriguing, but not clinically validated. We aimed to test the feasibility of a non-custom-constructed platform for disseminating existing large, standardized databases across institutions for promoting radiomics studies. Hence, University of Texas MD Anderson Cancer Center organized two public radiomics challenges in head and neck radiation oncology domain. This was done in conjunction with MICCAI 2016 satellite symposium using Kaggle-in-Class, a machine-learning and predictive analytics platform. We drew on clinical data matched to radiomics data derived from diagnostic contrast-enhanced computed tomography (CECT) images in a dataset of 315 patients with oropharyngeal cancer. Contestants were tasked to develop models for (i) classifying patients according to their human papillomavirus status, or (ii) predicting local tumor recurrence, following radiotherapy. Data were split into training, and test sets. Seventeen teams from various professional domains participated in one or both of the challenges. This review paper was based on the contestants' feedback; provided by 8 contestants only (47%). Six contestants (75%) incorporated extracted radiomics features into their predictive model building, either alone (n = 5; 62.5%), as was the case with the winner of the “HPV” challenge, or in conjunction with matched clinical attributes (n = 2; 25%). Only 23% of contestants, notably, including the winner of the “local recurrence” challenge, built their model relying solely on clinical data. In addition to the value of the integration of machine learning into clinical decision-making, our experience sheds light on challenges in sharing and directing existing datasets toward clinical applications of radiomics, including hyper-dimensionality of the clinical/imaging data attributes. Our experience may help guide researchers to create a framework for sharing and reuse of already published data that we believe will ultimately accelerate the pace of clinical applications of radiomics; both in challenge or clinical settings

    Tramadol—Present and Future

    No full text

    Interactive Nonlinear Multiobjective Optimization Methods

    No full text
    An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the role of the decision maker is very important in interactive methods, methods presented are classified according to the type of preference information that the decision maker is assumed to provide.peerReviewe

    Genetically engineered insulin and its pharmaceutical analogues

    No full text

    Critical care usage after major gastrointestinal and liver surgery: a prospective, multicentre observational study

    No full text
    Background: Patient selection for critical care admission must balance patient safety with optimal resource allocation. This study aimed to determine the relationship between critical care admission, and postoperative mortality after abdominal surgery. Methods: This prespecified secondary analysis of a multicentre, prospective, observational study included consecutive patients enrolled in the DISCOVER study from UK and Republic of Ireland undergoing major gastrointestinal and liver surgery between October and December 2014. The primary outcome was 30-day mortality. Multivariate logistic regression was used to explore associations between critical care admission (planned and unplanned) and mortality, and inter-centre variation in critical care admission after emergency laparotomy. Results: Of 4529 patients included, 37.8% (n=1713) underwent planned critical care admissions from theatre. Some 3.1% (n=86/2816) admitted to ward-level care subsequently underwent unplanned critical care admission. Overall 30-day mortality was 2.9% (n=133/4519), and the risk-adjusted association between 30-day mortality and critical care admission was higher in unplanned [odds ratio (OR): 8.65, 95% confidence interval (CI): 3.51–19.97) than planned admissions (OR: 2.32, 95% CI: 1.43–3.85). Some 26.7% of patients (n=1210/4529) underwent emergency laparotomies. After adjustment, 49.3% (95% CI: 46.8–51.9%, P<0.001) were predicted to have planned critical care admissions, with 7% (n=10/145) of centres outside the 95% CI. Conclusions: After risk adjustment, no 30-day survival benefit was identified for either planned or unplanned postoperative admissions to critical care within this cohort. This likely represents appropriate admission of the highest-risk patients. Planned admissions in selected, intermediate-risk patients may present a strategy to mitigate the risk of unplanned admission. Substantial inter-centre variation exists in planned critical care admissions after emergency laparotomies

    Critical care usage after major gastrointestinal and liver surgery: a prospective, multicentre observational study

    No full text
    Background Patient selection for critical care admission must balance patient safety with optimal resource allocation. This study aimed to determine the relationship between critical care admission, and postoperative mortality after abdominal surgery. Methods This prespecified secondary analysis of a multicentre, prospective, observational study included consecutive patients enrolled in the DISCOVER study from UK and Republic of Ireland undergoing major gastrointestinal and liver surgery between October and December 2014. The primary outcome was 30-day mortality. Multivariate logistic regression was used to explore associations between critical care admission (planned and unplanned) and mortality, and inter-centre variation in critical care admission after emergency laparotomy. Results Of 4529 patients included, 37.8% (n=1713) underwent planned critical care admissions from theatre. Some 3.1% (n=86/2816) admitted to ward-level care subsequently underwent unplanned critical care admission. Overall 30-day mortality was 2.9% (n=133/4519), and the risk-adjusted association between 30-day mortality and critical care admission was higher in unplanned [odds ratio (OR): 8.65, 95% confidence interval (CI): 3.51–19.97) than planned admissions (OR: 2.32, 95% CI: 1.43–3.85). Some 26.7% of patients (n=1210/4529) underwent emergency laparotomies. After adjustment, 49.3% (95% CI: 46.8–51.9%, P<0.001) were predicted to have planned critical care admissions, with 7% (n=10/145) of centres outside the 95% CI. Conclusions After risk adjustment, no 30-day survival benefit was identified for either planned or unplanned postoperative admissions to critical care within this cohort. This likely represents appropriate admission of the highest-risk patients. Planned admissions in selected, intermediate-risk patients may present a strategy to mitigate the risk of unplanned admission. Substantial inter-centre variation exists in planned critical care admissions after emergency laparotomies
    corecore