204 research outputs found
Low-Background gamma counting at the Kimballton Underground Research Facility
The next generation of low-background physics experiments will require the
use of materials with unprecedented radio-purity. A gamma-counting facility at
the Kimballton Underground Research Facility (KURF) has been commissioned to
perform initial screening of materials for radioactivity primarily from
nuclides in the 238U and 232Th decay chains, 40K and cosmic-ray induced
isotopes. The facility consists of two commercial low-background high purity
germanium (HPGe) detectors. A continuum background reduction better than a
factor of 10 was achieved by going underground. This paper describes the
facility, detector systems, analysis techniques and selected assay results.Comment: 7 pages, 7 figures. Submitted to NIM
The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions
A comprehensive monitoring system for the thermal environment inside the
Borexino neutrino detector was developed and installed in order to reduce
uncertainties in determining temperatures throughout the detector. A
complementary thermal management system limits undesirable thermal couplings
between the environment and Borexino's active sections. This strategy is
bringing improved radioactive background conditions to the region of interest
for the physics signal thanks to reduced fluid mixing induced in the liquid
scintillator. Although fluid-dynamical equilibrium has not yet been fully
reached, and thermal fine-tuning is possible, the system has proven extremely
effective at stabilizing the detector's thermal conditions while offering
precise insights into its mechanisms of internal thermal transport.
Furthermore, a Computational Fluid-Dynamics analysis has been performed, based
on the empirical measurements provided by the thermal monitoring system, and
providing information into present and future thermal trends. A two-dimensional
modeling approach was implemented in order to achieve a proper understanding of
the thermal and fluid-dynamics in Borexino. It was optimized for different
regions and periods of interest, focusing on the most critical effects that
were identified as influencing background concentrations. Literature
experimental case studies were reproduced to benchmark the method and settings,
and a Borexino-specific benchmark was implemented in order to validate the
modeling approach for thermal transport. Finally, fully-convective models were
applied to understand general and specific fluid motions impacting the
detector's Active Volume.Comment: arXiv admin note: substantial text overlap with arXiv:1705.09078,
arXiv:1705.0965
Indirect study of low-energy resonances in P31(p,)28Si and Cl35(p,)32S
The reaction sequences governing the reaction flow in the rp process are important for the understanding of the energy generation and nucleosynthesis of heavy elements in hot and explosive stellar hydrogen burning. Of considerable interest are (p,) reactions along the process path which lead to the formation of reaction cycles rather than to chains of proton capture processes and decays. Previous direct attempts to measure the low-energy reaction cross sections for P31(p,)28Si and Cl35(p,)32S resulted only in upper limits for the strengths of possible low-energy resonances which may dominate the reaction rates. In this paper an indirect experimental approach is presented to study the structure of the low-energy unbound states in the compound nuclei 32 S and Ar36. The results allow a more accurate determination of the contributions of these low-energy levels in the (p,) reaction channel
A Study of the Residual 39Ar Content in Argon from Underground Sources
The discovery of argon from underground sources with significantly less 39Ar
than atmospheric argon was an important step in the development of
direct-detection dark matter experiments using argon as the active target. We
report on the design and operation of a low background detector with a single
phase liquid argon target that was built to study the 39Ar content of the
underground argon. Underground argon from the Kinder Morgan CO2 plant in
Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in
atmospheric argon.Comment: 21 pages, 10 figure
The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment
Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7
neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by
their elastic scattering on electrons in 100 tons of liquid scintillator. The
neutrino event rate in the scintillator is expected to be low (~0.35 events per
day per ton), and the signals will be at energies below 1.5 MeV, where
background from natural radioactivity is prominent. Scintillation light
produced by the recoil electrons is observed by an array of 2240
photomultiplier tubes. Because of the intrinsic radioactive contaminants in
these PMTs, the liquid scintillator is shielded from them by a thick barrier of
buffer fluid. A spherical vessel made of thin nylon film contains the
scintillator, separating it from the surrounding buffer. The buffer region
itself is divided into two concentric shells by a second nylon vessel in order
to prevent inward diffusion of radon atoms. The radioactive background
requirements for Borexino are challenging to meet, especially for the
scintillator and these nylon vessels. Besides meeting requirements for low
radioactivity, the nylon vessels must also satisfy requirements for mechanical,
optical, and chemical properties. The present paper describes the research and
development, construction, and installation of the nylon vessels for the
Borexino experiment
Socio-demographic and cultural factors related to non-participation in the Dutch colorectal cancer screening programme
BackgroundHigh participation rates are essential for a screening programme to be beneficial. To reach non-participants in a targeted manner, insight in characteristics of non-participants is needed. We investigated demographic differences between participants and non-participants in the Dutch faecal immunochemical test-based colorectal cancer (CRC) screening programme.MethodsIn this population-based cohort study, we included all invitees for CRC screening in 2018 and 2019. Participation status, birth year, and sex were extracted from the Dutch national screening information system and linked to demographic characteristics from Statistics Netherlands, including migration background, level of education, socioeconomic category, household composition, and household income. A multivariable logistic regression was used to assess the association between demographic factors and participation.ResultsA total of 4,383,861 individuals were invited for CRC screening in 2018 and 2019, of which 3,170,349 (72.3%) participated. Individuals were less likely to participate when they were single and/or living with others (single with other residents versus couple: odds ratio [OR] 0.34, 95% confidence interval [CI]: 0.31–0.38), had a migration background (e.g. Moroccan migrant versus Dutch background: OR 0.43, 95% CI: 0.42–0.44), or had a low income (lowest versus highest quintile: OR 0.45, 95% CI: 0.44–0.45). Although to a lesser extent, non-participation was also significantly associated with being male, being younger, receiving social welfare benefits and having a low level of education.ConclusionWe found that individuals who were single and/or living with others, immigrants from Morocco or individuals with low income were the least likely to participate in the Dutch CRC screening programme. Targeted interventions are needed to minimise inequities in CRC screening.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
Breakout from the hot CNO cycle: The 18F(p,γ) vs 18F(p,α) branching ratio
We have studied the properties of low-lying 18Fp resonances as excited states in 19Ne. Three new levels have been found in the range 0Ec.m.1 MeV just above the 18Fp threshold, and partial decay widths and isospin-mirror connections are suggested to known states in 19F for each of the nine states in this energy range. The properties of these resonances have been used to calculate the reaction rate NAvfor the 18F(p,)19Ne and 18F(p,)15O reactions in the temperature range 108T109. A comparison of these rates indicates that in this temperature range, the 14O(,p)17F(p,)18Ne(e)18F(p,)19Ne reaction sequence is not as fast as the 15O(,)19Ne reaction
Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector
We report the measurement of electron neutrino elastic scattering from 8B
solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran
Sasso (Italy). The rate of solar neutrino-induced electron scattering events
above this energy in Borexino is 0.217 +- 0.038 (stat) +- 0.008 (syst) cpd/100
t, which corresponds to the equivalent unoscillated flux of (2.4 +- 0.4 (stat)
+- 0.1 (syst))x10^6 cm^-2 s^-1, in good agreement with measurements from SNO
and SuperKamiokaNDE. Assuming the 8B neutrino flux predicted by the high
metallicity Standard Solar Model, the average 8B neutrino survival probability
above 3 MeV is measured to be 0.29+-0.10. The survival probabilities for 7Be
and 8B neutrinos as measured by Borexino differ by 1.9 sigma. These results are
consistent with the prediction of the MSW-LMA solution of a transition in the
solar electron neutrino survival probability between the low energy
vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation
regimes.Comment: 10 pages, 8 figures, 6 table
Pulse-Shape discrimination with the Counting Test Facility
Pulse shape discrimination (PSD) is one of the most distinctive features of
liquid scintillators. Since the introduction of the scintillation techniques in
the field of particle detection, many studies have been carried out to
characterize intrinsic properties of the most common liquid scintillator
mixtures in this respect. Several application methods and algorithms able to
achieve optimum discrimination performances have been developed. However, the
vast majority of these studies have been performed on samples of small
dimensions. The Counting Test Facility, prototype of the solar neutrino
experiment Borexino, as a 4 ton spherical scintillation detector immersed in
1000 tons of shielding water, represents a unique opportunity to extend the
small-sample PSD studies to a large-volume setup. Specifically, in this work we
consider two different liquid scintillation mixtures employed in CTF,
illustrating for both the PSD characterization results obtained either with the
processing of the scintillation waveform through the optimum Gatti's method, or
via a more conventional approach based on the charge content of the
scintillation tail. The outcomes of this study, while interesting per se, are
also of paramount importance in view of the expected Borexino detector
performances, where PSD will be an essential tool in the framework of the
background rejection strategy needed to achieve the required sensitivity to the
solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.
Measurement of CNGS muon neutrino speed with Borexino
We have measured the speed of muon neutrinos with the Borexino detector using
short-bunch CNGS beams. The final result for the difference in time-of-flight
between a =17 GeV muon neutrino and a particle moving at the speed of light
in vacuum is {\delta}t = 0.8 \pm 0.7stat \pm 2.9sys ns, well consistent with
zero.Comment: 6 pages, 5 figure
- …