204 research outputs found

    Low-Background gamma counting at the Kimballton Underground Research Facility

    Get PDF
    The next generation of low-background physics experiments will require the use of materials with unprecedented radio-purity. A gamma-counting facility at the Kimballton Underground Research Facility (KURF) has been commissioned to perform initial screening of materials for radioactivity primarily from nuclides in the 238U and 232Th decay chains, 40K and cosmic-ray induced isotopes. The facility consists of two commercial low-background high purity germanium (HPGe) detectors. A continuum background reduction better than a factor of 10 was achieved by going underground. This paper describes the facility, detector systems, analysis techniques and selected assay results.Comment: 7 pages, 7 figures. Submitted to NIM

    The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Full text link
    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.Comment: arXiv admin note: substantial text overlap with arXiv:1705.09078, arXiv:1705.0965

    Indirect study of low-energy resonances in P31(p,)28Si and Cl35(p,)32S

    Get PDF
    The reaction sequences governing the reaction flow in the rp process are important for the understanding of the energy generation and nucleosynthesis of heavy elements in hot and explosive stellar hydrogen burning. Of considerable interest are (p,) reactions along the process path which lead to the formation of reaction cycles rather than to chains of proton capture processes and decays. Previous direct attempts to measure the low-energy reaction cross sections for P31(p,)28Si and Cl35(p,)32S resulted only in upper limits for the strengths of possible low-energy resonances which may dominate the reaction rates. In this paper an indirect experimental approach is presented to study the structure of the low-energy unbound states in the compound nuclei 32 S and Ar36. The results allow a more accurate determination of the contributions of these low-energy levels in the (p,) reaction channel

    A Study of the Residual 39Ar Content in Argon from Underground Sources

    Full text link
    The discovery of argon from underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of a low background detector with a single phase liquid argon target that was built to study the 39Ar content of the underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon.Comment: 21 pages, 10 figure

    The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

    Get PDF
    Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment

    Socio-demographic and cultural factors related to non-participation in the Dutch colorectal cancer screening programme

    Get PDF
    BackgroundHigh participation rates are essential for a screening programme to be beneficial. To reach non-participants in a targeted manner, insight in characteristics of non-participants is needed. We investigated demographic differences between participants and non-participants in the Dutch faecal immunochemical test-based colorectal cancer (CRC) screening programme.MethodsIn this population-based cohort study, we included all invitees for CRC screening in 2018 and 2019. Participation status, birth year, and sex were extracted from the Dutch national screening information system and linked to demographic characteristics from Statistics Netherlands, including migration background, level of education, socioeconomic category, household composition, and household income. A multivariable logistic regression was used to assess the association between demographic factors and participation.ResultsA total of 4,383,861 individuals were invited for CRC screening in 2018 and 2019, of which 3,170,349 (72.3%) participated. Individuals were less likely to participate when they were single and/or living with others (single with other residents versus couple: odds ratio [OR] 0.34, 95% confidence interval [CI]: 0.31–0.38), had a migration background (e.g. Moroccan migrant versus Dutch background: OR 0.43, 95% CI: 0.42–0.44), or had a low income (lowest versus highest quintile: OR 0.45, 95% CI: 0.44–0.45). Although to a lesser extent, non-participation was also significantly associated with being male, being younger, receiving social welfare benefits and having a low level of education.ConclusionWe found that individuals who were single and/or living with others, immigrants from Morocco or individuals with low income were the least likely to participate in the Dutch CRC screening programme. Targeted interventions are needed to minimise inequities in CRC screening.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Breakout from the hot CNO cycle: The 18F(p,γ) vs 18F(p,α) branching ratio

    Get PDF
    We have studied the properties of low-lying 18Fp resonances as excited states in 19Ne. Three new levels have been found in the range 0Ec.m.1 MeV just above the 18Fp threshold, and partial decay widths and isospin-mirror connections are suggested to known states in 19F for each of the nine states in this energy range. The properties of these resonances have been used to calculate the reaction rate NAvfor the 18F(p,)19Ne and 18F(p,)15O reactions in the temperature range 108T109. A comparison of these rates indicates that in this temperature range, the 14O(,p)17F(p,)18Ne(e)18F(p,)19Ne reaction sequence is not as fast as the 15O(,)19Ne reaction

    Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector

    Full text link
    We report the measurement of electron neutrino elastic scattering from 8B solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran Sasso (Italy). The rate of solar neutrino-induced electron scattering events above this energy in Borexino is 0.217 +- 0.038 (stat) +- 0.008 (syst) cpd/100 t, which corresponds to the equivalent unoscillated flux of (2.4 +- 0.4 (stat) +- 0.1 (syst))x10^6 cm^-2 s^-1, in good agreement with measurements from SNO and SuperKamiokaNDE. Assuming the 8B neutrino flux predicted by the high metallicity Standard Solar Model, the average 8B neutrino survival probability above 3 MeV is measured to be 0.29+-0.10. The survival probabilities for 7Be and 8B neutrinos as measured by Borexino differ by 1.9 sigma. These results are consistent with the prediction of the MSW-LMA solution of a transition in the solar electron neutrino survival probability between the low energy vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation regimes.Comment: 10 pages, 8 figures, 6 table

    Pulse-Shape discrimination with the Counting Test Facility

    Full text link
    Pulse shape discrimination (PSD) is one of the most distinctive features of liquid scintillators. Since the introduction of the scintillation techniques in the field of particle detection, many studies have been carried out to characterize intrinsic properties of the most common liquid scintillator mixtures in this respect. Several application methods and algorithms able to achieve optimum discrimination performances have been developed. However, the vast majority of these studies have been performed on samples of small dimensions. The Counting Test Facility, prototype of the solar neutrino experiment Borexino, as a 4 ton spherical scintillation detector immersed in 1000 tons of shielding water, represents a unique opportunity to extend the small-sample PSD studies to a large-volume setup. Specifically, in this work we consider two different liquid scintillation mixtures employed in CTF, illustrating for both the PSD characterization results obtained either with the processing of the scintillation waveform through the optimum Gatti's method, or via a more conventional approach based on the charge content of the scintillation tail. The outcomes of this study, while interesting per se, are also of paramount importance in view of the expected Borexino detector performances, where PSD will be an essential tool in the framework of the background rejection strategy needed to achieve the required sensitivity to the solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.

    Measurement of CNGS muon neutrino speed with Borexino

    Get PDF
    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between a =17 GeV muon neutrino and a particle moving at the speed of light in vacuum is {\delta}t = 0.8 \pm 0.7stat \pm 2.9sys ns, well consistent with zero.Comment: 6 pages, 5 figure
    corecore