32 research outputs found

    Split-off dimer defects on the Si(001)2x1 surface

    Full text link
    Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were investigated using high-resolution scanning tunneling microscopy and first principles calculations. We find that under low bias filled-state tunneling conditions, isolated 'split-off' dimers in these defect complexes are imaged as pairs of protrusions while the surrounding Si surface dimers appear as the usual 'bean-shaped' protrusions. We attribute this to the formation of pi-bonds between the two atoms of the split-off dimer and second layer atoms, and present charge density plots to support this assignment. We observe a local brightness enhancement due to strain for different DV complexes and provide the first experimental confirmation of an earlier prediction that the 1+2-DV induces less surface strain than other DV complexes. Finally, we present a previously unreported triangular shaped split-off dimer defect complex that exists at SB-type step edges, and propose a structure for this defect involving a bound Si monomer.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    Simulations of denuded-zone formation during growth on surfaces with anisotropic diffusion

    Get PDF
    We have investigated the formation of denuded zones during epitaxial growth on surfaces exhibiting anisotropic diffusion of adparticles, such as Si(001)-2x1, using Monte Carlo simulations and a continuum model. In both the simulations, which were mainly for low-temperature cases (small critical clusters), and the continuum model, appropriate for high-temperature cases (large critical clusters), it was found that the ratio of denuded-zone widths Wf and Ws in the fast- and slow-diffusion directions scales with the ratio Df/Ds of the diffusion constants in the two directions with a power of 1/2, i.e., Wf/Ws ≈ (Df/Ds)1/2, independent of various conditions including the degree of diffusion anisotropy. This supplies the foundation of a method for extracting the diffusion anisotropy from the denuded zone anisotropy which is experimentally measurable. Further, we find that unequal probabilities of a diffusing particle sticking to different types of step edges [e.g., S A and SB steps on Si(001)] does not affect the relation Wf/Ws ≈ (Df/Ds)1/2 seriously unless the smaller of the two sticking probabilities is less than about 0.1. Finally, we examined the relation between the number of steps and the number of sites visited in anisotropic random walks, finding it is better described by a crossover from one-dimensional to two-dimensional behavior than by scaling behavior with a single exponent. This result has bearing on scaling arguments relating denuded-zone widths to diffusion constants for anisotropic diffusion.open7

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Evaluating angular ion current density for atomically defined nanotips

    No full text
    In this paper we investigate methods to characterize angular current density from atomically defined gas field ion sources. We show that the ion beam emitted from a single apex atom is described by a two-dimensional Gaussian profile. Owing to the Gaussian shape of the beam and the requirement to collect the majority of the ion current, fixed apertures have inhomogeneous illumination. Therefore, angular current density measurements through a fixed aperture record averaged angular current density. This makes comparison of data difficult as averaged angular current density depends on aperture size. For the same reasons, voltage normalization cannot be performed for fixed aperture measurements except for aperture sizes that are infinitely small. Consistent determination of angular current density and voltage normalization, however, can be achieved if the beam diameter as well as total ion current are known. In cases where beam profile cannot be directly imaged with a field ion microscope, the beam profile could be extracted from measurements taken at multiple acceleration voltages and/or with multiple aperture sizes. \ua9 Microscopy Society of America 2014.Peer reviewed: YesNRC publication: Ye

    Dopant depletion in the near surface region of thermally prepared silicon (100) in UHV

    No full text
    Degenerately doped (arsenic) n-type hydrogen terminated silicon (100) samples were prepared using various heat treatments for ultrahigh vacuum scanning tunneling microscopy (STM) and spectroscopy (STS) analysis. Samples heat treated to 1050 C were found to have a consistent level of doping throughout the bulk and near surface regions. STS revealed tunneling through dopant states consistent with degenerately doped samples. SIMS profiling and HREELS measurements confirmed dopant and carrier concentrations, respectively. Samples heated to 1250 C were found to have a reduced concentration of dopants in the near surface region. STS measurements showed shifted I/V curves and the loss of tunneling through dopant states in the band gap, indicating reduced dopant concentrations. Observations were confirmed by SIMS and HREELS where depleted dopants and reduced carrier concentrations were measured. The effect of the varying surface dopant concentrations on the STM imaging characteristics of dangling bonds on hydrogen terminated surfaces was also investigated. Understanding the effect of thermal processing on near surface dopant atom concentrations will permit better control over equilibrium charge occupation and charging characteristics of dangling bond midgap states on H:silicon. \ua9 2012 American Vacuum Society.Peer reviewed: YesNRC publication: Ye

    Four-probe measurements with a three-probe scanning tunneling microscope

    No full text
    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe. \ua9 2014 AIP Publishing LLC.Peer reviewed: YesNRC publication: Ye

    Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces

    No full text
    We study both experimentally and theoretically the electronic behavior of dangling bonds (DBs) at a hydrogen terminated Si(100)-2 71 surface. Dangling bonds behave as quantum dots and, depending on their separation, can be tunnel coupled with each other or completely isolated. On n-type highly doped silicon, the latter have a net charge of -1e, while coupled DBs exhibit altered but predictable filling behavior derived from an interplay between interdot tunneling and Coulomb repulsion. We found good correlation between many scanning tunneling micrographs of dangling bond structures and our theoretical results of a corresponding extended Hubbard model. We also demonstrated chemical methods to prevent tunnel coupling and isolate charge on a single dangling bond. \ua9 2011 American Institute of Physics.Peer reviewed: YesNRC publication: Ye

    Tip apex shaping of gas field ion sources

    No full text
    A procedure to control W(111) tip shape during etching to a single atom is described. It is demonstrated that the base of a single atom tip (SAT) can be shaped in order to alter the final operating voltage and emission opening angle of single atom tips for use as gas field ion sources or electron cold field emission sources. The operating voltages for single atom tips varied between 5 and 17. kV during helium ion beam generation. The emission properties of SATs were evaluated by fitting SAT images and measuring the full width at half maximum (FWHM) of the helium ion images. The FWHM is related to the linear opening angle and was evaluated as a function of SAT operating voltage. The results show that a forward focussing effect is observed such that the spot size decreases faster than is expected solely from an acceleration effect, indicating an affect from the tip shape. These results have consequences in designing gas field ion sources where etching is used to prepare the emitter. \ua9 2013.Peer reviewed: YesNRC publication: Ye
    corecore