86 research outputs found

    Accretion and ejection in black-hole X-ray transients

    Get PDF
    Aims: We summarize the current observational picture of the outbursts of black-hole X-ray transients (BHTs), based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state. The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. The counterclockwise traversal of the HLD is explained as follows: the poloidal magnetic field in the ADAF forces the flow to remain ADAF and the source to move upwards in the HLD rather than to turn left. Thus, the history of the system determines the counterclockwise traversal of the HLD. As a result, no BHT is expected to ever traverse the entire HLD curve in the clockwise direction. Conclusions: We offer a physical interpretation of accretion and ejection in BHTs with only one parameter, the mass transfer rate.Comment: Accepted for publication in A&

    Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

    Full text link
    The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| < 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2, 6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405) who find no evidence for a correlation between the power of ballistic jets and black hole spi

    Synergies

    Get PDF
    CTA will have important synergies with many of the new generation of astronomical and astroparticle observatories. As the flagship VHE gamma-ray observatory for the coming decades, CTA plays a similar role in the VHE waveband as the SKA in radio, ALMA at millimetre, or E-ELT/TMT/GMT in the optical wavebands, providing excellent sensitivity and resolution compared to prior facilities. At the same time, the scientific output of CTA will be enhanced by the additional capabilities provided by these instruments (and vice-versa). MWL and MM studies using CTA provide added value to the science cases in two main ways

    Swift J1644+57: an ideal test bed of radiation mechanisms in a relativistic super-Eddington jet

    Get PDF
    Within the first 10 d after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray, and γ-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as synchrotron self-Compton, photospheric and proton synchrotron. The infrared-to-γ-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time-scale shorter than ∼1 per cent of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux-dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray light curve, whereas the synchrotron process in a magnetic jet needs no fine tuning for this TDE

    Fitting along the Fundamental Plane: New comparisons of jet physics across the black hole mass scale

    No full text
    Correlations between the radio and X-ray bands in the hard state of black hole X-ray binaries (BHBs) have led to the discovery of the Fundamental Plane of black hole accretion, linking accretion-driven radiative attributes to black hole mass. Although this discovery has led to new constraints on radiative efficiencies, there is still significant degeneracy in terms of understanding the governing physics. I present several new results exploring the processes driving the Fundamental Plane over the black hole mass range. These include the first ever homogeneous fits of sources at approximately the same Eddington luminosity but millions of times different in mass, which I focus on for this proceeding article
    corecore