54 research outputs found

    Are Patellofemoral Joint Alignment and Shape Associated With Structural Magnetic Resonance Imaging Abnormalities and Symptoms Among People With Patellofemoral Pain?

    Get PDF
    BACKGROUND:: Patellofemoral malalignment has been observed among people with patellofemoral pain (PFP) and may be associated with the presence of imaging features of osteoarthritis, symptoms, and function.PURPOSE:: To determine whether patellofemoral joint alignment and bony shape are associated with (1) cartilage, bone, and soft tissue morphological abnormalities defined on magnetic resonance imaging (MRI) and (2) reported symptoms and function among people with PFP.STUDY DESIGN:: Cross-sectional study; Level of evidence, 3.METHODS:: Participants (mean ± SD age, 30.2 ± 9.5 years; range, 14-50 years; 78 females, 58.6%) completed questionnaires regarding demographics, pain, symptoms, and function and underwent a 3-T MRI scan of their more symptomatic eligible knee. Structural MRI abnormalities were scored with the MOAKS (Magnetic Resonance Imaging Osteoarthritis Knee Score), and MRI alignment and shape were measured with standardized methods. Associations among MOAKS features, PFP symptoms, and alignment and shape measures were evaluated with regression analyses (α = .05).RESULTS:: Minor cartilage defects were present in 22 (16.5%) participants, patellar osteophytes in 83 (62.4%), anterior femur osteophytes in 29 (21.8%), Hoffa synovitis in 81 (60.9%), and prefemoral fat pad synovitis in 49 (36.8%). A larger Insall-Salvati ratio was significantly associated with the presence of patellar osteophytes (odds ratio [OR], 51.82; 95% CI, 4.20-640.01), Hoffa synovitis (OR, 60.37; 95% CI, 4.66-782.61), and prefemoral fat pad synovitis (OR, 43.31; 95% CI, 4.28-438.72) in the patellofemoral joint. A larger patellar tilt angle was significantly associated with the presence of minor cartilage defects (OR, 1.10; 95% CI, 1.00-1.20), the presence of patellar osteophytes (OR 1.12; 95%CI 1.02-1.22), and prefemoral fat pad synovitis (OR, 1.11; 95% CI, 1.03-1.20) in the patellofemoral joint. Finally, a larger bisect offset was significantly associated with the presence of minor cartilage defects (OR, 1.05; 95% CI, 1.00-1.11) and patellar osteophytes (OR, 1.07; 95% CI, 1.01-1.14) in the patellofemoral joint. The majority of patellofemoral alignment measures were not associated with symptoms or function.CONCLUSION:: For people with PFP, the presence of morphological abnormalities defined on MRI appears to be related to particular patellofemoral alignment measures, including higher Insall-Salvati ratio (indicating patella alta), larger patellar tilt angle (indicating greater lateral tilt), and larger bisect offset (indicating greater lateral displacement). Hardly any associations were found with symptoms or function.

    Coulomb excitation of a 242Am isomeric target: E2 and e3 strengths, rotational alignment, and collective enhancement

    Get PDF
    A 98% pure242mAm (K = 5-, t1/2 = 141 years) isomeric target was Coulomb excited with a 170.5-MeV 40Ar beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18h{stroke} in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast Kπ = 6- rotational band, and 13 in a band tentatively identified as the predicted yrast Kπ = 5+ band. The rotational bands based on the Kπ = 5- isomer and the 6-bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The γ -ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete ΔK = 1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5- and 6- bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the I πK= 6-6 state in the nominal 6-5 isomer band state is measured within the PRM as 45.6+0.3-1.1%. The E2 and M1 strengths coupling the 5- and 6- bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5+ band are reproduced by an E3 strength of ≈15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in 242Am are compared with the single-particle alignments in 241Am

    Recent actinide nuclear data efforts with the DANCE 4Ï€ BaF2 array

    No full text
    Much of the recent work in the DANCE collaboration has focused on nuclides of interest to stockpile stewardship, attribution science and the advanced fuel cycle initiative. As an example, we have recently begun a program to produce high precision measurements of the key production and destruction reactions of important nuclear fuel elements and radiochemical diagnostic isotopes. The neutron capture targets that have been fielded under this program include several isotopes of uranium, plutonium and americium. However, neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low energy neutron-induced fission. To overcome this difficulty we have designed and implemented a dual parallel-plate avalanche counter fission-tagging detector. This design provides a high efficiency for detecting fission fragments and is self-contained to allow loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the recent experimental program will be presented as well as preliminary results from neutron capture measurements on 234,235,236U. Planned measurements on 238,239Pu will also be discussed

    Neutron capture and (n,2n) measurements on 241

    No full text
    We report on a set of neutron-induced reaction measurements on 241Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering Center (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of ~300 keV where background limits the measurement. Using mono-energetic neutrons produced in the 2H(d,n)3He reaction at the Triangle Universities Nuclear Laboratory (TUNL), we have measured the 241Am(n,2n) excitation function from 7.6 to 14.5 MeV using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates
    • …
    corecore