182 research outputs found

    Factors associated with ethnical disparity in overall survival for patients with hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is an important cause of cancer-related death worldwide. Ethnical disparity in overall survival has been demonstrated for HCC patients in the United States (U.S.). We aimed to evaluate the contributors to this survival disparity. The SEER database was used to identify HCC patients from 2004 to 2012. Kaplan-Meier curves and Cox proportional hazard models were used to evaluate overall survival by ethnicity and the contributors to ethnical survival disparity. A total of 33 062 patients were included: 15 986 Non-Hispanic Whites, 6535 Hispanic Whites, 4842 African Americans, and 5699 Asians. Compared to Non-Hispanic Whites, African Americans had worse survival (HR, 1.18; 95%CI, 1.14-1.23), while Asians had a better survival (HR, 0.85; 95%CI, 0.82-0.89), and Hispanic Whites had a similar survival (HR, 1.01; 95%CI, 0.97-1.05). Multivariate Cox analysis identified that tumor presentation- and treatment-related factors significantly contributed to the ethnical survival disparity. Especially, tumor size was the most important contributor (HR, 1.11; 95%CI, 1.07-1.16). There is no ethnical survival disparity in patients undergoing liver transplantation and sub-analysis of patients within the Milan criteria for liver transplantation demonstrated no significant survival disparity between African Americans and non-Hispanic Whites in transplantation adjustment analysis (HR, 1.23; 95%CI, 1.11-1.35 in non-adjustment analysis to HR, 1.05; 95%CI, 0.95-1.15 after adjustment). Finally, no important contributor to the superior overall survival in Asians was identified. In conclusion, poor tumor presentation at diagnosis, limited benefit from resection and restricted utilization of liver transplantation are important contributors to poorer survival of African Americans with HCC

    Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results

    Get PDF
    We present the first results from our Post-Newtonian (PN) Smoothed Particle Hydrodynamics (SPH) code, which has been used to study the coalescence of binary neutron star (NS) systems. The Lagrangian particle-based code incorporates consistently all lowest-order (1PN) relativistic effects, as well as gravitational radiation reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with and without 1PN effects, for NS with stiff equations of state, modeled as polytropes with Γ=3\Gamma=3. We find that 1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal is altered dramatically, showing strong modulation of the exponentially decaying waveform near the end of the merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor corrections onl

    PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma

    Get PDF
    Novel systemic treatments for hepatocellular carcinoma (HCC) are strongly needed. Immunotherapy is a promising strategy that can induce specific antitumor immune responses. Understanding the mechanisms of immune resistance by HCC is crucial for development of suitable immunotherapeutics. We used immunohistochemistry on tissue-microarrays to examine the co-expression of the immune inhibiting molecules PD-L1, Galectin-9, HVEM and IDO, as well as tumor CD8+ lymphocyte infiltration in HCC, in two independent cohorts of patients. We found that at least some expression in tumor cells was seen in 97% of cases for HVEM, 83% for PD-L1, 79% for Gal-9 and 66% for IDO. In the discovery cohort (n = 94), we found that lack of, or low, tumor expression of PD-L1 (p < 0.001), Galectin-9 (p < 0.001) and HVEM (p < 0.001), and low CD8+TIL count (p = 0.016), were associated with poor HCC-specific survival. PD-L1, Galectin-9 and CD8+TIL count were predictive of HCC-specific survival independent of baseline clinicopathologic characteristics and the combination of these markers was a powerful predictor of HCC-specific survival (HR 0.29; p <0.001). These results were confirmed in the validation cohort (n = 60). We show that low expression levels of PD-L1 and Gal-9 in combination with low CD8+TIL count predict extremely poor HCC-specific survival and it requires a change in two of these parameters to significantly improve prognosis. In conclusion, intra-tumoral expression of these immune inhibiting molecules was observed in the majority of HCC patients. Low expression of PD-L1 and Galectin-9 and low CD8+TIL count are associated with poor HCC-specific survival. Combining immune biomarkers leads to superior predictors of HCC mortality

    Immunosuppressive drug withdrawal late after liver transplantation improves the lipid profile and reduces infections

    Get PDF
    BACKGROUND: Treatment with immunosuppressive drugs (IS) after transplantation is accompanied by severe side effects. A limited number of studies have investigated the effect of IS withdrawal on IS-related comorbidities after liver transplantation (LTx) and the results are contradictory. PATIENTS AND METHODS: We determined in a retrospective case-control study the clinical effects of complete IS withdrawal in operationally tolerant (TOL) LTx recipients who discontinued IS 10.8 ± 5.1 years after LTx (n = 13) compared with a completely matched control (CTRL) group with a regular IS regimen (n = 22). TOL recipients have been IS and rejection free for 4.0 ± 2.8 years. RESULTS: IS withdrawal in TOL recipients resulted in lower low-density lipoprotein levels (P = 0.027), whereas this was not observed in the CTRL group. Furthermore, persistent infections in individual recipients were resolved successfully by IS withdrawal. TOL recipients also had significantly fewer de novo infections after IS withdrawal (TOL pre vs. post withdrawal P = 0.0247) compared with recipients continued on IS during the same follow-up period (post withdrawal TOL vs. CTRL P = 0.044). Unfortunately, no improvement in kidney function, and lower rates of de novo occurrences of diabetes, hypertension, cardiovascular diseases, and malignancies were observed in the TOL group after IS withdrawal compared with the CTRL group during the same follow-up time period. CONCLUSION: IS withdrawal late after LTx reduces infection rates and low-density lipoprotein levels, but other IS-related side effects persist late after LTx. An accurate tolerance immune profile enabling identification of tolerant LTx recipients eligible for safe IS withdrawal earlier after transplantation is needed to prevent the development of irreversible IS-related side effects

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    corecore