1,327 research outputs found
Sensitivity of the g-mode frequencies to pulsation codes and their parameters
From the recent work of the Evolution and Seismic Tools Activity (ESTA,
Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare
pulsational frequencies computed using most of the pulsational codes available
in the asteroseismic community, the dependence of the theoretical frequencies
with non-physical choices is now quite well fixed. To ensure that the accuracy
of the computed frequencies is of the same order of magnitude or better than
the observational errors, some requirements in the equilibrium models and the
numerical resolutions of the pulsational equations must be followed. In
particular, we have verified the numerical accuracy obtained with the Saclay
seismic model, which is used to study the solar g-mode region (60 to
140Hz). We have compared the results coming from the Aarhus adiabatic
pulsation code (ADIPLS), with the frequencies computed with the Granada Code
(GraCo) taking into account several possible choices. We have concluded that
the present equilibrium models and the use of the Richardson extrapolation
ensure an accuracy of the order of in the determination of the
frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic
Keep it simple: three indicators to deal with overfishing
Three simple fisheries indicators are presented: (i) percentage of mature fish in catch, with 100% as target; (ii) percent of specimens with optimum length in catch, with 100% as target; and (iii) percentage of ‘mega-spawners‘ in catch, with 0% as target, and 30–40% as representative of reasonable stock structure if no upper size limit exists. Application of these indicators to stocks of Gadus morhua, Sardinella aurita and Epinephelus aeneus demonstrate their usefulness. It is argued that such simple indicators have the potential to allow more stakeholders such as fishers, fish dealers, supermarket managers, consumers and politicians to participate in fisheries management and eventually hold and reverse the global pattern of convenience overfishing, which is defined here as deliberate overfishing sanctioned by official bodies who find it more convenient to risk eventual collapse of fish stocks than to risk social and political conflicts
Theory of Stellar Oscillations
In recent years, astronomers have witnessed major progresses in the field of
stellar physics. This was made possible thanks to the combination of a solid
theoretical understanding of the phenomena of stellar pulsations and the
availability of a tremendous amount of exquisite space-based asteroseismic
data. In this context, this chapter reviews the basic theory of stellar
pulsations, considering small, adiabatic perturbations to a static, spherically
symmetric equilibrium. It starts with a brief discussion of the solar
oscillation spectrum, followed by the setting of the theoretical problem,
including the presentation of the equations of hydrodynamics, their
perturbation, and a discussion of the functional form of the solutions.
Emphasis is put on the physical properties of the different types of modes, in
particular acoustic (p-) and gravity (g-) modes and their propagation cavities.
The surface (f-) mode solutions are also discussed. While not attempting to be
comprehensive, it is hoped that the summary presented in this chapter addresses
the most important theoretical aspects that are required for a solid start in
stellar pulsations research.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
A taxonomic and phylogenetic revision of Penicillium section Aspergilloides
AbstractSpecies belonging to Penicillium section Aspergilloides have a world-wide distribution with P. glabrum, P. spinulosum and P. thomii the most well-known species of this section. These species occur commonly and can be isolated from many substrates including soil, food, bark and indoor environments. The taxonomy of these species has been investigated several times using various techniques, but species delimitation remains difficult. In the present study, 349 strains belonging to section Aspergilloides were subjected to multilocus molecular phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Section Aspergilloides is subdivided into 12 clades and 51 species. Twenty-five species are described here as new and P. yezoense, a species originally described without a Latin diagnosis, is validated. Species belonging to section Aspergilloides are phenotypically similar and most have monoverticillate conidiophores and grow moderately or quickly on agar media. The most important characters to distinguish these species were colony sizes on agar media, growth at 30 °C, ornamentation and shape of conidia, sclerotium production and stipe roughness
CoRoT/ESTA-TASK 1 and TASK 3 comparison of the internal structure and seismic properties of representative stellar models: Comparisons between the ASTEC, CESAM, CLES, GARSTEC and STAROX codes
We compare stellar models produced by different stellar evolution codes for
the CoRoT/ESTA project, comparing their global quantities, their physical
structure, and their oscillation properties. We discuss the differences between
models and identify the underlying reasons for these differences. The stellar
models are representative of potential CoRoT targets. Overall we find very good
agreement between the five different codes, but with some significant
deviations. We find noticeable discrepancies (though still at the per cent
level) that result from the handling of the equation of state, of the opacities
and of the convective boundaries. The results of our work will be helpful in
interpreting future asteroseismology results from CoRoT.Comment: 26 pages, 21 figures, accepted for publication in Astrophysics and
Space Science, CoRoT/ESTA Volum
An Introduction to Data Analysis in Asteroseismology
A practical guide is presented to some of the main data analysis concepts and
techniques employed contemporarily in the asteroseismic study of stars
exhibiting solar-like oscillations. The subjects of digital signal processing
and spectral analysis are introduced first. These concern the acquisition of
continuous physical signals to be subsequently digitally analyzed. A number of
specific concepts and techniques relevant to asteroseismology are then
presented as we follow the typical workflow of the data analysis process,
namely, the extraction of global asteroseismic parameters and individual mode
parameters (also known as peak-bagging) from the oscillation spectrum.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Robust Henderson III estimators of variance components in the nested error model
Common methods for estimating variance components in Linear Mixed Models include Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML). These methods are based on the strong assumption of multivariate normal distribution and it is well know that they are very sensitive to outlying observations with respect to any of the random components. Several robust altematives of these methods have been proposed (e.g. Fellner 1986, Richardson and Welsh 1995). In this work we present several robust alternatives based on the Henderson method III which do not rely on the normality assumption and provide explicit solutions for the variance components estimators. These estimators can later be used to derive robust estimators of regression coefficients. Finally, we describe an application of this procedure to small area estimation, in which the main target is the estimation of the means of areas or domains when the within-area sample sizes are small
Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV
Charged-particle pseudorapidity densities are presented for the d+Au reaction
at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS
experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and
60-80% centrality classes. Models incorporating both soft physics and hard,
perturbative QCD-based scattering physics agree well with the experimental
results. The data do not support predictions based on strong-coupling,
semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV
data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4
GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80%
centrality range; added additional discussion on centrality selection bia
Scanning the phases of QCD with BRAHMS
BRAHMS has the ability to study relativistic heavy ion collisions from the
final freeze-out of hadrons all the way back to the initial wave-function of
the gold nuclei. This is accomplished by studying hadrons with a very wide
range of momenta and angles. In doing so we can scan various phases of QCD,
from a hadron gas, to a quark gluon plasma and perhaps to a color glass
condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004
conferenc
- …