185 research outputs found
Chaotic saddles in nonlinear modulational interactions in a plasma
A nonlinear model of modulational processes in the subsonic regime involving
a linearly unstable wave and two linearly damped waves with different damping
rates in a plasma is studied numerically. We compute the maximum Lyapunov
exponent as a function of the damping rates in a two-parameter space, and
identify shrimp-shaped self-similar structures in the parameter space. By
varying the damping rate of the low-frequency wave, we construct bifurcation
diagrams and focus on a saddle-node bifurcation and an interior crisis
associated with a periodic window. We detect chaotic saddles and their stable
and unstable manifolds, and demonstrate how the connection between two chaotic
saddles via coupling unstable periodic orbits can result in a crisis-induced
intermittency. The relevance of this work for the understanding of modulational
processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres
Nonlinear stability of solitons against strong external perturbations
We study soliton stability under the action of strong external perturbations. Limits on the weak perturbation approach are established with the help of average Lagrangian methods and full simulations. We found that for the same relative perturbation, larger amplitude solitons develop instability earlier than weaker amplitude solitons.F. B. Rizzato, G. I. de Oliveira, and A. C.-L. Chia
Vacuum stability, neutrinos, and dark matter
Motivated by the discovery hint of the Standard Model (SM) Higgs mass around
125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on
Higgs scalar of the SM extensions including neutrinos and dark matter (DM).
Guided by the SM gauge symmetry and the minimal changes in the SM Higgs
potential we consider two extensions of neutrino sector (Type-I and Type-III
seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal
dark matter (MDM)) respectively. The darkon contributes positively to the
function of the Higgs quartic coupling and can stabilize the
SM vacuum up to high scale. Similar to the top quark in the SM we find the
cause of instability is sensitive to the size of new Yukawa couplings between
heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and
Type-III seesaw fermion triplet, two nontrivial representations of
group, will bring the additional positive contributions to the gauge coupling
renormalization group (RG) evolution and would also help to stabilize
the electroweak vacuum up to high scale.Comment: 18 pages, 15 figures; published versio
The SCUBA-2 Cosmology Legacy Survey : The EGS deep field I - Deep number counts and the redshift distribution of the recovered Cosmic Infrared Background at 450 and 850 um
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2016 The Author (s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present deep observations at 450 um and 850 um in the Extended Groth Strip field taken with the SCUBA-2 camera mounted on the James Clerk Maxwell Telescope as part of the deep SCUBA-2 Cosmology Legacy Survey (S2CLS), achieving a central instrumental depth of mJy/beam and mJy/beam. We detect 57 sources at 450 um and 90 at 850 um with S/N > 3.5 over ~70 sq. arcmin. From these detections we derive the number counts at flux densities mJy and mJy, which represent the deepest number counts at these wavelengths derived using directly extracted sources from only blank-field observations with a single-dish telescope. Our measurements smoothly connect the gap between previous shallower blank-field single-dish observations and deep interferometric ALMA results. We estimate the contribution of our SCUBA-2 detected galaxies to the cosmic infrared background (CIB), as well as the contribution of 24 um-selected galaxies through a stacking technique, which add a total of and MJy/sr, at 450 um and 850 um, respectively. These surface brightnesses correspond to and per cent of the total CIB measurements, where the errors are dominated by those of the total CIB. Using the photometric redshifts of the 24 um-selected sample and the redshift distributions of the submillimetre galaxies, we find that the redshift distribution of the recovered CIB is different at each wavelength, with a peak at for 450 um and at for 850um, consistent with previous observations and theoretical models.Peer reviewedFinal Published versio
Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro
BACKGROUND: In vitro maturation (IVM) of oocytes followed by fertilization in vitro (IVF) and embryo transfer offers an alternative to conventional IVF treatment that minimises drug administration and avoids ovarian hyperstimulation. However, the technique is less efficient than maturation in vivo. In the present study, a non-human primate model was used to address the hypothesis that the number of oocytes is increased and their nuclear and cytoplasmic maturity after IVM are improved when maturation is initiated in vivo by priming with hCG. METHODS: Young, adult cynomolgus monkeys were given recombinant human (rh) gonadotropins to stimulate the development of multiple follicles, and oocytes were aspirated 0, 12, 24, or 36 h after injection of an ovulatory dose of rhCG. The nuclear status of oocytes was determined at the time of recovery and after culture for a total elapsed time of 40–44 hours after hCG. RESULTS: Priming with hCG significantly increased the number of oocytes harvested, especially after delaying aspiration for 24 h or longer. Nuclear maturation after the full period in culture was also enhanced by priming: 71.5, 83.6, and 94.6% of oocytes collected at 0, 12, and 24 h hCG had progressed to MII by the end of the culture period, compared to 87.8% of oocytes that were retrieved at 36 h. A large proportion of oocytes reaching the MII stage had either or both abnormal spindles (>40%) and misaligned chromosomes (>60%), judging by immunofluorescence microscopy, but these abnormalities were independent of culture time. The mitochondria were evenly distributed throughout the cytoplasm at all stages of maturation. Importantly, there was no microscopic evidence that the duration of culture had any injurious effects on the cells. CONCLUSION: In conclusion, the evidence supports this non-human primate as a model for human IVM and the practice of priming with hCG to promote developmental potential
Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin
Activation of the endothelium is a pivotal first step for leukocyte migration into the diseased brain. Consequently, imaging this activation process is highly desirable. We synthesized carbohydrate-functionalized magnetic nanoparticles that bind specifically to the endothelial transmembrane inflammatory proteins E and P selectin. Magnetic resonance imaging revealed that the targeted nanoparticles accumulated in the brain vasculature following acute administration into a clinically relevant animal model of stroke, though increases in selectin expression were observed in both brain hemispheres. Nonfunctionalized naked particles also appear to be a plausible agent to target the ischemic vasculature. The importance of these findings is discussed regarding the potential for translation into the clinic
Developments in the Ni–Nb–Zr amorphous alloy membranes
Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD *31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100-xZrx alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane
Parthenogenic Blastocysts Derived from Cumulus-Free In Vitro Matured Human Oocytes
Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis..Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer
- …