2,731 research outputs found
Electron-Positron colliders
An electron-positron linear collider in the energy range between 500 and 1000
GeV is of crucial importance to precisely test the Standard Model and to
explore the physics beyond it. The physics program is complementary to that of
the Large Hadron Collider. Some of the main physics goals and the expected
accuracies of the anticipated measurements at such a linear collider are
discussed. A short review of the different collider designs presently under
study is given including possible upgrade paths to the multi-TeV region.
Finally a framework is presented within which the realisation of such a project
could be achieved as a global international project.Comment: 14 pages, 16 figures, Proceedings of the XX International Symposium
on Lepton and Photon Interactions at High Energies, Rome, Italy, 23-28 July,
200
CERN and the future of particle physics
This paper presents CERN and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design
luminosity and energy as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and by the International Linear Collider, or by a high-energy electron-proton machine, the LHeC. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward
Deep-Elastic pp Scattering at LHC from Low-x Gluons
Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum
transfer range 4 GeV*2 < |t| < 10 GeV*2 is planned to be measured by the TOTEM
group. We study this process in a model where the deep-elastic scattering is
due to a single hard collision of a valence quark from one proton with a
valence quark from the other proton. The hard collision originates from the
low-x gluon cloud around one valence quark interacting with that of the other.
The low-x gluon cloud can be identified as color glass condensate and has size
~0.3 F. Our prediction is that pp differential cross section in the large |t|
region decreases smoothly as momentum transfer increases. This is in contrast
to the prediction of pp differential cross section with visible oscillations
and smaller cross sections by a large number of other models.Comment: 10 pages, including 4 figure
Local Properties of the Potential Energy Landscape of a Model Glass: Understanding the Low Temperature Anomalies
Though the existence of two-level systems (TLS) is widely accepted to explain
low temperature anomalies in the sound absorption, heat capacity, thermal
conductivity and other quantities, an exact description of their microscopic
nature is still lacking. We performed computer simulations for a binary
Lennard-Jones system, using a newly developed algorithm to locate double-well
potentials (DWP) and thus two-level systems on a systematic basis. We show that
the intrinsic limitations of computer simulations like finite time and finite
size problems do not hamper this analysis. We discuss how the DWP are embedded
in the total potential energy landscape. It turns out that most DWP are
connected to the dynamics of the smaller particles and that these DWP are
rather localized. However, DWP related to the larger particles are more
collective
Fast vectorized algorithm for the Monte Carlo Simulation of the Random Field Ising Model
An algoritm for the simulation of the 3--dimensional random field Ising model
with a binary distribution of the random fields is presented. It uses
multi-spin coding and simulates 64 physically different systems simultaneously.
On one processor of a Cray YMP it reaches a speed of 184 Million spin updates
per second. For smaller field strength we present a version of the algorithm
that can perform 242 Million spin updates per second on the same machine.Comment: 13 pp., HLRZ 53/9
Non Markovian persistence in the diluted Ising model at criticality
We investigate global persistence properties for the non-equilibrium critical
dynamics of the randomly diluted Ising model. The disorder averaged persistence
probability of the global magnetization is found to decay
algebraically with an exponent that we compute analytically in a
dimensional expansion in . Corrections to Markov process are
found to occur already at one loop order and is thus a novel
exponent characterizing this disordered critical point. Our result is
thoroughly compared with Monte Carlo simulations in , which also include a
measurement of the initial slip exponent. Taking carefully into account
corrections to scaling, is found to be a universal exponent,
independent of the dilution factor along the critical line at , and
in good agreement with our one loop calculation.Comment: 7 pages, 4 figure
Colloids in light fields: particle dynamics in random and periodic energy landscapes
The dynamics of colloidal particles in potential energy landscapes have
mainly been investigated theoretically. In contrast, here we discuss the
experimental realization of potential energy landscapes with the help of light
fields and the observation of the particle dynamics by video microscopy. The
experimentally observed dynamics in periodic and random potentials are compared
to simulation and theoretical results in terms of, e.g. the mean-squared
displacement, the time-dependent diffusion coefficient or the non-Gaussian
parameter. The dynamics are initially diffusive followed by intermediate
subdiffusive behaviour which again becomes diffusive at long times. How
pronounced and extended the different regimes are, depends on the specific
conditions, in particular the shape of the potential as well as its roughness
or amplitude but also the particle concentration. Here we focus on dilute
systems, but the dynamics of interacting systems in external potentials, and
thus the interplay between particle-particle and particle-potential
interactions, is also mentioned briefly. Furthermore, the observed dynamics of
dilute systems resemble the dynamics of concentrated systems close to their
glass transition, with which it is compared. The effect of certain potential
energy landscapes on the dynamics of individual particles appears similar to
the effect of interparticle interactions in the absence of an external
potential
Backward correlations and dynamic heterogeneities: a computer study of ion dynamics
We analyse the correlated back and forth dynamics and dynamic
heterogeneities, i.e. the presence of fast and slow ions, for a lithium
metasilicate system via computer simulations. For this purpose we define, in
analogy to previous work in the field of glass transition, appropriate
three-time correlation functions. They contain information about the dynamics
during two successive time intervals. First we apply them to simple model
systems in order to clarify their information content. Afterwards we use this
formalism to analyse the lithium trajectories. A strong back-dragging effect is
observed, which also fulfills the time-temperature superposition principle.
Furthermore, it turns out that the back-dragging effect is long-ranged and
exceeds the nearest neighbor position. In contrast, the strength of the dynamic
heterogeneities does not fulfill the time-temperature superposition principle.
The lower the temperature, the stronger the mobility difference between fast
and slow ions. The results are then compared with the simple model systems
considered here as well as with some lattice models of ion dynamics.Comment: 12 pages, 10 figure
- âŠ