310 research outputs found

    Comparative Study of Human and Mouse Postsynaptic Proteomes Finds High Compositional Conservation and Abundance Differences for Key Synaptic Proteins

    Get PDF
    Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease

    Characterization of the proteome, diseases and evolution of the human postsynaptic density

    Get PDF
    We isolated the postsynaptic density from human neocortex (hPSD) and identified 1,461 proteins. hPSD mutations cause 133 neurological and psychiatric diseases and were enriched in cognitive, affective and motor phenotypes underpinned by sets of genes. Strong protein sequence conservation in mammalian lineages, particularly in hub proteins, indicates conserved function and organization in primate and rodent models. The hPSD is an important structure for nervous system disease and behavior

    NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells

    Get PDF
    Summary: Spermatogonial stem cells (SSCs) sustain spermatogenesis and fertility throughout adult male life. The conserved RNA-binding protein NANOS2 is essential for the maintenance of SSCs, but its targets and mechanisms of function are not fully understood. Here, we generated a fully functional epitope-tagged Nanos2 mouse allele and applied the highly stringent cross-linking and analysis of cDNAs to define NANOS2 RNA occupancy in SSC lines. NANOS2 recognizes the AUKAAWU consensus motif, mostly found in the 3′ untranslated region of defined messenger RNAs (mRNAs). We find that NANOS2 is a regulator of key signaling and metabolic pathways whose dosage or activity are known to be critical for SSC maintenance. NANOS2 interacts with components of CCR4-NOT deadenylase complex in SSC lines, and consequently, NANOS2 binding reduces the half-lives of target transcripts. In summary, NANOS2 contributes to SSC maintenance through the regulation of target mRNA stability and key self-renewal pathways

    MouseIndelDB: a database integrating genomic indel polymorphisms that distinguish mouse strains

    Get PDF
    MouseIndelDB is an integrated database resource containing thousands of previously unreported mouse genomic indel (insertion and deletion) polymorphisms ranging from ∼100 nt to 10 Kb in size. The database currently includes polymorphisms identified from our alignment of 26 million whole-genome shotgun sequence traces from four laboratory mouse strains mapped against the reference C57BL/6J genome using GMAP. They can be queried on a local level by chromosomal coordinates, nearby gene names or other genomic feature identifiers, or in bulk format using categories including mouse strain(s), class of polymorphism(s) and chromosome number. The results of such queries are presented either as a custom track on the UCSC mouse genome browser or in tabular format. We anticipate that the MouseIndelDB database will be widely useful for research in mammalian genetics, genomics, and evolutionary biology. Access to the MouseIndelDB database is freely available at: http://variation.osu.edu/

    The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax

    Synaptopathies: Dysfunction of Synaptic Function Confirmed rare copy number variants implicate novel genes in schizophrenia

    Get PDF
    Abstract Understanding how cognitive processes including learning, memory, decision making and ideation are encoded by the genome is a key question in biology. Identification of sets of genes underlying human mental disorders is a path towards this objective. Schizophrenia is a common disease with cognitive symptoms, high heritability and complex genetics. We have identified genes involved with schizophrenia by measuring differences in DNA copy number across the entire genome in 91 schizophrenia cases and 92 controls in the Scottish population. Our data reproduce rare and common variants observed in public domain data from >3000 schizophrenia cases, confirming known disease loci as well as identifying novel loci. We found copy number variants in PDE10A (phosphodiesterase 10A), CYFIP1 [cytoplasmic FMR1 (Fragile X mental retardation 1)-interacting protein 1], K + channel genes KCNE1 and KCNE2, the Down's syndrome critical region 1 gene RCAN1 (regulator of calcineurin 1), cell-recognition protein CHL1 (cell adhesion molecule with homology with L1CAM), the transcription factor SP4 (specificity protein 4) and histone deacetylase HDAC9, among others (see http://www.genes2cognition.org/SCZ-CNV). Integrating the function of these many genes into a coherent model of schizophrenia and cognition is a major unanswered challenge

    Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements

    Get PDF
    Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines

    Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements

    Get PDF
    Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines
    corecore