464 research outputs found
Optical excitations of a self assembled artificial ion
By use of magneto-photoluminescence spectroscopy we demonstrate bias
controlled single-electron charging of a single quantum dot. Neutral, single,
and double charged excitons are identified in the optical spectra. At high
magnetic fields one Zeeman component of the single charged exciton is found to
be quenched, which is attributed to the competing effects of tunneling and
spin-flip processes. Our experimental data are in good agreement with
theoretical model calculations for situations where the spatial extent of the
hole wave functions is smaller as compared to the electron wave functions.Comment: to be published in Physical Review B (rapid communication
Quantum orientational melting of mesoscopic clusters
By path integral Monte Carlo simulations we study the phase diagram of two -
dimensional mesoscopic clusters formed by electrons in a semiconductor quantum
dot or by indirect magnetoexcitons in double quantum dots. At zero (or
sufficiently small) temperature, as quantum fluctuations of particles increase,
two types of quantum disordering phenomena take place: first, at small values
of quantum de Boer parameter q < 0.01 one can observe a transition from a
completely ordered state to that in which different shells of the cluster,
being internally ordered, are orientationally disordered relative to each
other. At much greater strengths of quantum fluctuations, at q=0.1, the
transition to a disordered (superfluid for the boson system) state takes place.Comment: 4 pages, 6 Postscript figure
Polarization dependence of emission spectra of multiexcitons in self-assembled quantum dots
We have investigated the polarization dependence of the emission spectra of
p-shell multiexcitons of a quantum dot when the single particle level spacing
is larger than the characteristic energy of the Coulomb interactions. We find
that there are many degenerate multiexciton states. The emission intensities
depend on the number of degenerate initial and final states of the optical
transitions. However, unlike the transition energies, they are essentially
independent of the strength of the Coulomb interactions. In the presence of
electron-hole symmetry the independence is exact.Comment: 7 pages, 5 figures, published in Solid State Commu
Multiband theory of multi-exciton complexes in self-assembled quantum dots
We report on a multiband microscopic theory of many-exciton complexes in
self-assembled quantum dots. The single particle states are obtained by three
methods: single-band effective-mass approximation, the multiband
method, and the tight-binding method. The electronic structure calculations are
coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave
functions of electrons and valence holes are expanded in the basis of
Slater determinants. The Coulomb matrix elements are evaluated using statically
screened interaction for the three different sets of single particle states and
the correlated -exciton states are obtained by the configuration interaction
method. The theory is applied to the excitonic recombination spectrum in
InAs/GaAs self-assembled quantum dots. The results of the single-band
effective-mass approximation are successfully compared with those obtained by
using the of and tight-binding methods.Comment: 10 pages, 8 figure
Sn delta-doping in GaAs
We have prepared a number of GaAs structures delta-doped by Sn using the
well-known molecular beam epitaxy growth technique. The samples obtained for a
wide range of Sn doping densities were characterised by magnetotransport
experiments at low temperatures and in high magnetic fields up to 38 T.
Hall-effect and Shubnikov-de Haas measurements show that the electron densities
reached are higher than for other delta-dopants, like Si and Be. The maximum
carrier density determined by the Hall effect equals 8.4x10^13 cm^-2. For all
samples several Shubnikov-de Haas frequencies were observed, indicating the
population of multiple subbands. The depopulation fields of the subbands were
determined by measuring the magnetoresistance with the magnetic field in the
plane of the delta-layer. The experimental results are in good agreement with
selfconsistent bandstructure calculations. These calculation shows that in the
sample with the highest electron density also the conduction band at the L
point is populated.Comment: 11 pages text (ps), 9 figures (ps), submitted to Semicon. Science
Tech
Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing
We propose an all-optical implementation of quantum-information processing in
semiconductor quantum dots, where electron-hole excitations (excitons) serve as
the computational degrees of freedom (qubits). We show that the strong dot
confinement leads to an overall enhancement of Coulomb correlations and to a
strong renormalization of the excitonic states, which can be exploited for
performing conditional and unconditional qubit operations.Comment: 5 pages revtex, 2 encapsulated postscript figures. Accepted for
publication in Phys. Rev. B (Rapid Communication
Local Optical Spectroscopy in Quantum Confined Systems: A Theoretical Description
A theoretical description of local absorption is proposed in order to
investigate spectral variations on a length scale comparable with the extension
of the relevant quantum states. A general formulation is derived within the
density-matrix formalism including Coulomb correlation, and applied to the
prototypical case of coupled quantum wires. The results show that excitonic
effects may have a crucial impact on the local absorption with implications for
the spatial resolution and the interpretation of near-field optical spectra.Comment: To appear in Phys. Rev. Lett. - 11 pages, 3 PostScript figures (1
figure in colors) embedded. Uses RevTex, and psfig style
{\it In-situ} Laser Microprocessing at the Quantum Level
One of the biggest challenges of nanotechnology is the fabrication of
nano-objects with perfectly controlled properties. Here we employ a focused
laser beam both to characterize and to {\it in-situ} modify single
semiconductor structures by heating them from cryogenic to high temperatures.
The heat treatment allows us to blue-shift, in a broad range and with
resolution-limited accuracy, the quantized energy levels of light and charge
carriers confined in optical microcavities and self-assembled quantum dots
(QDs). We demonstrate the approach by tuning an optical mode into resonance
with the emission of a single QD and by bringing different QDs in mutual
resonance. This processing method may open the way to a full control of
nanostructures at the quantum level.Comment: 3 figure
Tunable Indistinguishable Photons From Remote Quantum Dots
Single semiconductor quantum dots have been widely studied within devices
that can apply an electric field. In the most common system, the low energy
offset between the InGaAs quantum dot and the surrounding GaAs material limits
the magnitude of field that can be applied to tens of kVcm^-1, before carriers
tunnel out of the dot. The Stark shift experienced by the emission line is
typically 1 meV. We report that by embedding the quantum dots in a quantum well
heterostructure the vertical field that can be applied is increased by over an
order of magnitude whilst preserving the narrow linewidths, high internal
quantum efficiencies and familiar emission spectra. Individual dots can then be
continuously tuned to the same energy allowing for two-photon interference
between remote, independent, quantum dots
Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots
Optically controlled coherent dynamics of charge (excitonic) degrees of
freedom in a semiconductor quantum dot under the influence of lattice dynamics
(phonons) is discussed theoretically. We show that the dynamics of the lattice
response in the strongly non-linear regime is governed by a semiclassical
resonance between the phonon modes and the optically driven dynamics. We stress
on the importance of the stability of intermediate states for the truly
coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl
- …